Description

- High Density, high current/low voltage applications
- Foil technology that adds higher reliability factor over the traditional magnet wire used for higher frequency circuit designs
- Current range from 78.0 to 33.8 Amps
- Inductance range from 0.50 uH to 6.52 uH
- Ferrite core material

Applications

- Next generation microprocessors
- Energy storage applications
- DC-DC converters
- Computers

Environmental Data

- Storage temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Operating ambient temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Solder reflow temperature: $+260^{\circ} \mathrm{C}$ max. for 10 seconds max.

Part Number	\qquad	$\begin{gathered} \text { OCL (1) } \\ \text { nominal } \\ +/-20 \% \mu \mathrm{H} \end{gathered}$	$\begin{gathered} \text { Irms (2) } \\ \text { Amperes } \\ \text { (Typ.) } \end{gathered}$	Isat (3) Amperes (Typ.)	$\begin{gathered} \text { DCR }(\mathrm{m} \Omega) \\ \operatorname{max.} @ \\ 20^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { Volts (4) } \\ \mu \text { Sec (V } \mu \mathrm{S} \text {) } \\ \text { (ref.) } \end{gathered}$
HC3-R50-R	0.50	0.50	78.00	120	0.42	17.33
HC3-1R0-R	1.0	1.05	78.00	78	0.42	17.33
HC3-2R2-R	2.2	2.05	55.50	60	0.70	26.01
HC3-3R3-R	3.3	3.63	42.45	46	1.20	34.65
HC3-4R7-R	4.7	4.98	33.80	38	2.17	43.30
HC3-5R6-R	5.6	5.68	33.80	34.5	2.17	43.30
HC3-6R0-R	6.0	6.52	33.80	30.0	2.17	43.30

1) Test Parameters: $300 \mathrm{kHz}, 0.25 \mathrm{Vrms}$
2) DC current for approximately $\Delta \mathrm{T}$ of $40^{\circ} \mathrm{C}$ without core loss De-rating is necessary for AC currents. PCB layout, trace thickness and width, air flow and proximity of other heat generating components will affect temperature rise. It is recommended that the temperature of the part not exceed $125^{\circ} \mathrm{C}$ under worst case conditions verified in the end application.
3) Peak current for approximately 30% rolloff ($@ 20^{\circ} \mathrm{C}$)
4) Applied Volt-Time product ($\mathrm{V}-\mu \mathrm{S}$) across the inductor. This value represents the applied $\mathrm{V}-\mu \mathrm{S}$ at 300 kHz necessary to generate a core loss equal to 10% of the total losses for a $40^{\circ} \mathrm{C}$ temperature rise.

Part number definition:
HC3-XXX-R
HC3 = Product code and size
$X X X=$ Inductance value in $u H$.
$R=$ Decimal point. If no R is present, third character $=$ \#of zeros
-R suffix indicates RoHS compliant

Mechanical Diagrams

Part Number	Height max
HC3-R50-R	18.0
HC3-1R0-R	17.5
HC3-2R2-R	17.5
HC3-3R3-R	17.5
HC3-4R7-R	17.5
HC3-5R6-R	17.5
HC3-6R0-R	17.5

Inductance Characteristics

Core Loss

Irms DERATING WITH CORE LOSS for HC3 \% Applied Volt-u Seconds

COOPER Bussmann

PM-4122 3/07
 © Cooper Electronic
 Technologies 2007

Visit us on the Web at www.cooperbussmann.com
1225 Broken Sound Pkwy. Suite F Boca Raton, FL 33487
Tel: +1-561-998-4100 Toll Free: +1-888-414-2645 Fax: +1-561-241-6640
This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.
Life Support Policy: Cooper Electronic Technologies does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

