

TP65H050G4WS

HY-LINE

HY-LINE Power Components Vertriebs GmbH vertriebs GmbH Inselkammerstr. 10 D-82008 Unterhaching © +49 89 614 503 -10

Hochstrasse 355

HY-LINE AG

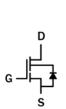
650V SuperGaN™ FET in TO-247 (source tab)

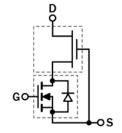
Description

The TP65H050G4WS 650V, 50 m Ω gallium nitride (GaN) FET is a normally-off device using Transphorm's Gen IV platform. It combines a state-of-the-art high voltage GaN HEMT with a low voltage silicon MOSFET to offer superior reliability and performance.

The Gen IV SuperGaN™ platform uses advanced epi and patented design technologies to simplify manufacturability while improving efficiency over silicon via lower gate charge, output capacitance, crossover loss, and reverse recovery charge.

Related Literature


- ANOOO9: Recommended External Circuitry for GaN FETs
- ANOOO3: Printed Circuit Board Layout and Probing


Ordering Information

Part Number	Package	Package Configuration
TP65H050G4WS	3 Lead TO-247	Source

TP65H050G4WS TO-247 (top view)

Cascode Schematic Symbol

Cascode Device Structure

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- · Robust design, defined by
 - Wide gate safety margin
 - Transient over-voltage capability
- Enhanced inrush current capability
- Very low QRR
- · Reduced crossover loss

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- · Achieves increased efficiency in both hard- and softswitched circuits
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Datacom
- · Broad industrial
- PV inverter
- Servo motor

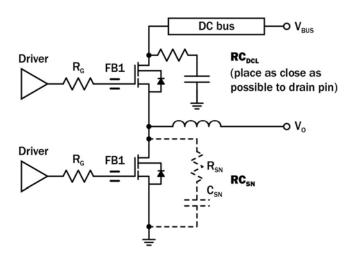
Key Specifications		
V _{DSS} (V)	650	
V _{(TR)DSS} (V)	725	
$R_{DS(on)eff}(m\Omega)$ max*	60	
Q _{RR} (nC) typ	112	
Q _G (nC) typ	16	

^{*} Dynamic on-resistance; see Figures 18 and 19

Absolute Maximum Ratings (T_c=25 °C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit
V_{DSS}	Drain to source voltage (T _J = -5	Drain to source voltage (T _J = -55 °C to 150 °C)		
$V_{(TR)DSS}$	Transient drain to source voltage	ge ^a	725	V
V _{GSS}	Gate to source voltage		±20	
P _D	Maximum power dissipation @	Tc=25°C	119	W
	Continuous drain current @Tc=	Continuous drain current @T _C =25°C b		A
ID	I_D Continuous drain current @ T_C =10		22	A
I _{DM}	Pulsed drain current (pulse wid	Pulsed drain current (pulse width: 10µs)		A
T _C	Operating temperature	Case	-55 to +150	°C
Tı	Operating temperature	Junction	-55 to +150	°C
Ts	Storage temperature		-55 to +150	°C
T _{SOLD}	Soldering peak temperature ^e		260	°C
-	Mounting Torque		80	N cm

Notes:


- In off-state, spike duty cycle D<0.01, spike duration <1µs
 For increased stability at high current operation, see Circuit Implementation on page 3
- c. Continuous switching operation
- ≤300 pulses per second for a total duration ≤20 minutes d.
- For 10 sec., 1.6mm from the case

Thermal Resistance

Symbol	Parameter	Maximum	Unit
R _{OJC}	Junction-to-case	1.05	°C/W
R _{OJA}	Junction-to-ambient	40	°C/W

transphormusa.com

Circuit Implementation

Simplified Half-bridge Schematic (See also on Figure 13)

Recommended gate drive: (0V, 12V) with R_G= 45Ω

Layout Recommendations: (See also ANOOO9)
Gate Loop:

- Gate Driver: SiLab Si823x/Si827x
- Keep gate loop compact
- Minimize coupling with power loop

Power loop:

- Minimize power loop path inductance
- Minimize switching node coupling with high and low power plane
- Add DC bus snubber to reduce to voltage ringing
- Add Switching node snubber for high current operation

Gate Ferrite Bead (FB1)	Required DC Link RC Snubber (RC _{DCL}) ^a	Recommended Switching Node RC Snubber (RC _{SN}) b, c
$240-300\Omega$ at 100MHz	[4.7nF + 5Ω] x 2	Not necessary b

Notes:

- a. RC_{DCL} should be placed as close as possible to the drain pin
- b. RC_{SN} is needed only if R_G is smaller than recommendations

Electrical Parameters (T_J=25 °C unless otherwise stated)

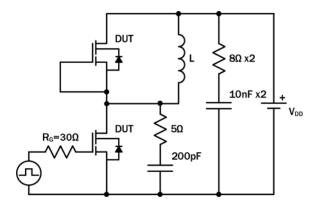
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward D	Forward Device Characteristics						
$V_{(BL)DSS}$	Drain-source voltage	650	_	_	V	V _{GS} =0V	
$V_{\text{GS(th)}}$	Gate threshold voltage	3.3	4	4.8	V		
$\Delta V_{\text{GS(th)}}\!/T_{\text{J}}$	Gate threshold voltage temperature coefficient	_	-6.2	_	mV/°C	V _{DS} =V _{GS} , I _D =0.7mA	
R _{DS(on)eff}	Drain-source on-resistance a	_	50	60	mΩ	V _{GS} =10V, I _D =22A	
NDS(on)eff	Dialit-source off-resistance	_	105	_	11152	V _{GS} =10V, I _D =22A, T _J =150°C	
	Drain to accuracy looks of accuracy	_	4	40		V _{DS} =650V, V _{GS} =0V	
I _{DSS}	Drain-to-source leakage current	_	15	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
		_	_	100	4	V _{GS} =20V	
Igss	Gate-to-source forward leakage current	_	_	-100	- nA	V _{GS} =-20V	
Ciss	Input capacitance	_	1000	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	_	110	_	pF		
C _{RSS}	Reverse transfer capacitance	_	6	_			
C _{O(er)}	Output capacitance, energy related b	_	164	_		V _{GS} =0V, V _{DS} =0V to 400V	
$C_{O(tr)}$	Output capacitance, time related °	_	280	_	pF		
Q _G	Total gate charge	_	16	24			
Q _{GS}	Gate-source charge	_	6	_	nC	V_{DS} =400V, V_{GS} =0V to 10V, I_{D} =22A	
Q_{GD}	Gate-drain charge	_	5	_		.5	
Qoss	Output charge	_	112	_	nC	V _{GS} =0V, V _{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	TBD	_			
t _R	Rise time	_	TBD	_	no	V _{DS} =400V, V _{GS} =0V to 10V,	
t _{D(off)}	Turn-off delay	_	TBD	_	ns	I _D =22A	
t _F	Fall time	_	TBD	_			

Dynamic on-resistance; see Figures 17 and 18 for test circuit and conditions

Equivalent capacitance to give same stored energy as V_{DS} rises from OV to 400V

Equivalent capacitance to give same charging time as V_{DS} rises from 0V to 400V

Electrical Parameters (T_J=25 °C unless otherwise stated)


Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Dev	Reverse Device Characteristics						
Is	Reverse current	_	_	22	А	V _{GS} =0V, T _C =100°C, ≤25% duty cycle	
V_{SD}	Reverse voltage ^a	_	2.2	2.6	V	V _{GS} =0V, I _S =22A	
		_	1.6	1.9		V _{GS} =0V, I _S =11A	
t _{RR}	Reverse recovery time	_	50	_	ns	Is=22A. V _{DD} =400V	
Q_{RR}	Reverse recovery charge	_	112	_	nC	- IS-22A, VDD-400V	
(di/dt) _{RM}	Reverse diode di/dt ^b	_	_	2500	A/µs	Circuit implementation and parameters on page 3	

Notes:

a. Includes dynamic R_{DS(on)} effect

b. Reverse conduction di/dt will not exceed this max value with recommended R_G.

Test Circuits and Waveforms

Figure 13. Switching Time Test Circuit (see circuit implementation on page 3 for methods to ensure clean switching)

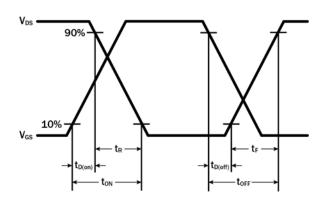


Figure 14. Switching Time Waveform

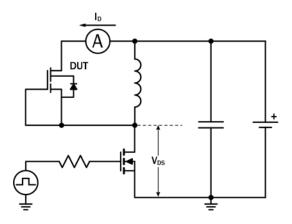


Figure 15. Diode Characteristics Test Circuit

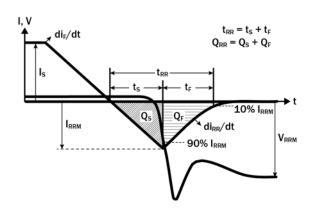


Figure 16. Diode Recovery Waveform

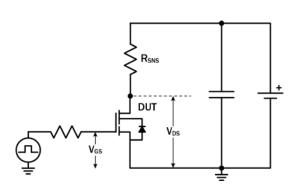


Figure 17. Dynamic R_{DS(on)eff} Test Circuit

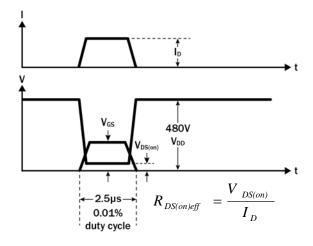


Figure 18. Dynamic R_{DS(on)eff} Waveform

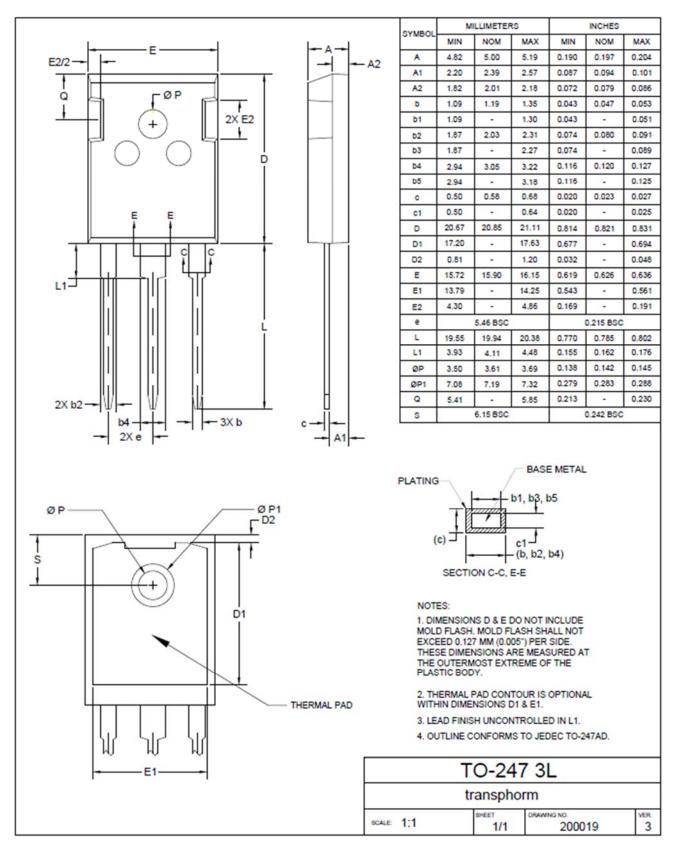
Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See ANOOO3: Printed Circuit Board Layout and Probing	


GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- · Design guides
- · Simulation models
- Technical papers and presentations

Mechanical

3 Lead TO-247 Package

Revision History

Version	Date	Change(s)
0	10/25/2020	Preliminary

HY-LINE Power Components Vertriebs GmbH Inselkammerstr. 10 D-82008 Unterhaching © +49 89/ 614 503 -10 power@hy-line.de

HY-LINE AG

Hochstrasse 355
CH-8200 Schaffhausen
© +41 52 647 42 00
info@hy-line.ch