transpherm

650V SuperGaN ${ }^{\circledR}$ FET in TO-247 (source tab)

TP65H035G4WSQA

HY-LINE AG
Hochstrasse 355
 (C) +41526474200 info@hy-line.ch

Description

The TP65H035G4WSQS 650V, $35 \mathrm{~m} \Omega$ gallium nitride (GaN) FET is a normally-off device using Transphorm's Gen IV platform. It combines a state-of-the-art high voltage GaN HEMT with a low voltage silicon MOSFET to offer superior reliability and performance.

The Gen IV SuperGaN® ${ }^{\circledR}$ platform uses advanced epi and patented design technologies to simplify manufacturability while improving efficiency over silicon via lower gate charge, output capacitance, crossover loss, and reverse recovery charge.

Related Literature

- AN0009: Recommended External Circuitry for GaN FETs
- AN0003: Printed Circuit Board Layout and Probing
- AN0010: Paralleling GaN FETs

Ordering Information

Part Number	Package	Package Configuration
TP65H035G4WSQA	3 lead TO-247	Source

TP65H035G4WSQA
TO-247
(top view)

Cascode Schematic Symbol

Cascode Device Structure

Features

- AEC-Q101 qualified GaN technology
- Dynamic $\mathrm{R}_{\mathrm{DS}(o n) \text { eff }}$ production tested
- Robust design, defined by
- Wide gate safety margin
- Transient over-voltage capability
- Enhanced inrush current capability
- Very low QRR
- Reduced crossover loss

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
- Increased power density
- Reduced system size and weight
- Overall lower system cost
- Achieves increased efficiency in both hard- and softswitched circuits
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Automotive
- Datacom
- Broad industrial

- PV inverter
- Servo motor

Key Specifications

$V_{\text {DSS }}(\mathrm{V})$	650
$\mathrm{~V}_{\text {DSS(TR) }}(\mathrm{V}) *$	800
$\mathrm{R}_{\mathrm{DS}(\text { on)eff }}(\mathrm{m} \Omega)$ max**	41
$\mathrm{Q}_{\text {RR }}(\mathrm{nC})$ typ	150
$\mathrm{Q}_{\mathrm{G}}(\mathrm{nC})$ typ	22

*Pulse condition, see note on Page2

* *Dynamic on-resistance; see Figures 19 and 20

TP65H035G4WSQA

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit
$V_{\text {DSS }}$	Drain to source voltage ($\mathrm{T}_{J}=-55^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$)		650	
$V_{\text {DSS(TR) }}$	Transient drain to source voltage a		800	V
$V_{\text {GSS }}$	Gate to source voltage		± 20	
PD	Maximum power dissipation @ $\mathrm{C}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		187	W
ID	Continuous drain current @ $\mathrm{C}_{\mathrm{c}}=25^{\circ} \mathrm{C}$ b		47.2	A
	Continuous drain current @ $\mathrm{C}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ b		33.4	A
IDM	Pulsed drain current (pulse width: $10 \mu \mathrm{~s}$)		240	A
Tc	Operating temperature	Case	-55 to +175	${ }^{\circ} \mathrm{C}$
TJ		Junction	-55 to +175	${ }^{\circ} \mathrm{C}$
Ts	Storage temperature		-55 to +175	${ }^{\circ} \mathrm{C}$
Tsold	Soldering peak temperature ${ }^{\text {c }}$		260	${ }^{\circ} \mathrm{C}$

Notes:

a. In off-state, spike duty cycle $\mathrm{D}<0.01$, spike duration $<1 \mu \mathrm{~s}$, spike duration $<30 \mu \mathrm{~s}$, nonrepetitive.
b. For increased stability at high current operation, see Circuit Implementation on page 3
c. For 10 sec ., 1.6 mm from the case

Thermal Resistance

Symbol	Parameter	Typical	Unit
$R_{\text {өנс }}$	Junction-to-case	0.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өл }}$	Junction-to-ambient	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Circuit Implementation

Simplified Half-bridge Schematic

Recommended gate drive: ($0 \mathrm{~V}, 12 \mathrm{~V}$) with $\mathrm{R}_{\mathrm{G}}=30 \Omega$

Gate Ferrite Bead (FB1)	Required DC Link RC Snubber (RCDCL) a	Recommended Switching Node RC Snubber (RCSN
$200-270 \Omega$ at 100 MHz	$[4.7 \mathrm{nF}+5 \Omega] \times 2$	See note b and c below

Notes:

a. $\quad \mathrm{RC}_{\mathrm{DCL}}$ should be placed as close as possible to the drain pin
b. $\quad R C_{S N}$ is needed only if R_{G} is smaller than recommendations
c. If required, please use $10 \Omega+100 \mathrm{pF}$

Electrical Parameters ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
Forward Device Characteristics						
$\mathrm{V}_{\text {DSS(BL) }}$	Drain-source voltage	650	-	-	V	$\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$
$\mathrm{V}_{\text {GS (th) }}$	Gate threshold voltage	3.3	4	4.8	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{l}_{\mathrm{D}}=1 \mathrm{~mA}$
$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th}) / \mathrm{T}_{J}}$	Gate threshold voltage temperature coefficient	-	-6.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Ros(on)eff	Drain-source on-resistance ${ }^{\text {a }}$	-	35	41	$\mathrm{m} \Omega$	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}$
		-	84	-		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{Id}_{\mathrm{D}}=30 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$
loss	Drain-to-source leakage current	-	3	30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=650 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	30	-		$\mathrm{V}_{\mathrm{DS}}=650 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$
lass	Gate-to-source forward leakage current	-	-	400	nA	$V_{G S}=20 \mathrm{~V}$
	Gate-to-source reverse leakage current	-	-	-400		$\mathrm{V}_{G S}=-20 \mathrm{~V}$
Ciss	Input capacitance	-	1500	-	pF	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=400 \mathrm{~V}, f=1 \mathrm{MHz}$
Coss	Output capacitance	-	147	-		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	5	-		
$\mathrm{Co}_{\text {(er) }}$	Output capacitance, energy related ${ }^{\text {b }}$	-	220	-	pF	$\mathrm{V}_{\mathrm{GS}}=\mathrm{OV}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 400V
$\mathrm{Co}_{\text {(tr) }}$	Output capacitance, time related ${ }^{\text {c }}$	-	380	-		
Q_{G}	Total gate charge	-	22	-	nC	$\begin{aligned} & V_{D S}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \\ & \mathrm{ID}_{\mathrm{D}}=32 \mathrm{~A} \end{aligned}$
Qas	Gate-source charge	-	8.4	-		
Qgi	Gate-drain charge	-	6.6	-		
Qoss	Output charge	-	150	-	nC	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 400V
$\mathrm{t}_{\mathrm{D} \text { (on) }}$	Turn-on delay	-	60	-	ns	$\begin{aligned} & V_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 12 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=30 \Omega, \mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \mathrm{Z}_{\mathrm{FB}}=240 \Omega \text { at } \\ & 100 \mathrm{MHz}(\text { See Figure 15) } \end{aligned}$
t_{R}	Rise time	-	10	-		
$t_{\text {D(off) }}$	Turn-off delay	-	94	-		
t_{F}	Fall time	-	10	-		
Eoff	Turn off Energy	-	82	-	$\mu \mathrm{J}$	$\begin{aligned} & V_{D S}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=0 \mathrm{~V} \text { to } 12 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=30 \Omega, \mathrm{I}_{\mathrm{D}}=32 \mathrm{~A}, \mathrm{Z}_{\mathrm{FB}}=180 \Omega \text { at } \\ & 100 \mathrm{MHz} \end{aligned}$
Eon	Turn on Energy	-	206	-	μ	

Notes:

a. Dynamic on-resistance; see Figures 19 and 20 for test circuit and conditions
b. Equivalent capacitance to give same stored energy as $V_{D S}$ rises from OV to 400V
c. Equivalent capacitance to give same charging time as $V_{D S}$ rises from $0 V$ to 400 V

Electrical Parameters $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated)

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
Reverse Device Characteristics						
Is	Reverse current	-	-	33.4	A	$V_{G S}=0 V, T_{C}=100^{\circ} \mathrm{C}$ $\leq 25 \%$ duty cycle
$V_{\text {SD }}$	Reverse voltage ${ }^{\text {a }}$	-	1.8	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{Is}^{\prime}=32 \mathrm{~A}$
		-	1.3	-		$V_{G S}=0 V, I_{S}=16 \mathrm{~A}$
$t_{\text {RR }}$	Reverse recovery time	-	59	-	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=32 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V}, \\ & \mathrm{di} / \mathrm{dt}=1000 \mathrm{~A} / \mathrm{ms} \end{aligned}$
QRR	Reverse recovery charge	-	150	-	nC	
(di/dt) RM	Reverse diode di/dt ${ }^{\text {b }}$	-	-	3200	A/ $\mu \mathrm{S}$	Circuit implementation and parameters on page 3

Notes:

a. Includes dynamic $\mathrm{R}_{\mathrm{DS}(\text { on })}$ effect
b. Reverse conduction di/dt will not exceed this max value with recommended R_{G}.

Typical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Figure 1. Typical Output Characteristics $\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Parameter: V_{GS}

Figure 3. Typical Transfer Characteristics
$V_{D S}=20 \mathrm{~V}$, parameter: T_{J}

Figure 2. Typical Output Characteristics $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$
Parameter: V_{GS}

Figure 4. Normalized On-resistance

$$
I_{D}=30 \mathrm{~A}, V_{G S}=10 \mathrm{~V}
$$

Typical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Figure 5. Typical Capacitance
$V_{G S}=0 V, f=1 M H z$

Figure 7. Typical Qoss

Figure 6. Typical Coss Stored Energy

Figure 8. Typical Gate Charge
$l_{D S}=32 \mathrm{~A}, V_{D S}=400 \mathrm{~V}$

Typical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Figure 9. Power Dissipation

Figure 11. Forward Characteristics of Rev. Diode $I_{S}=f\left(V_{S D}\right)$, parameter: T_{J}

Figure 10. Current Derating
Pulse width $\leq 10 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{GS}} \geq 10 \mathrm{~V}$

Figure 12. Transient Thermal Resistance

Typical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Figure 13. Safe Operating Area $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$

Figure 14. Inductive Switching Loss
$\mathrm{Rg}=30 \Omega, \mathrm{~V}_{\mathrm{DS}}=400 \mathrm{~V}$

Test Circuits and Waveforms

Figure 15. Switching Time Test Circuit
(see circuit implementation on page 3 for methods to ensure clean switching)

Figure 17. Diode Characteristics Test Circuit

Figure 19. Dynamic $\mathbf{R}_{\mathrm{DS}(o n) \text { eff }}$ Test Circuit

Figure 16. Switching Time Waveform

Figure 18. Diode Recovery Waveform

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \mathrm{Eff}}=\mathrm{V}_{\mathrm{DS}(\mathrm{ON})} / \mathrm{I}_{\mathrm{D}}
$$

Figure 20. Dynamic RDS(on)eff Waveform

TP65H035G4WSQA

Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note Printed Circuit Board Layout and Probing for GaN Power Switches. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See ANOOO3: Printed Circuit Board Layout and Probing	

GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

TP65H035G4WSQA

Revision History

Version	Date	Change(s)
0	$3 / 27 / 2020$	Preliminary Datasheet
0.1	$4 / 23 / 2020$	Corrected Qg and Qg Curve
1.0	$3 / 7 / 2021$	Updated $V_{\text {DSS(TR) }}$
1.1	$4 / 28 / 2021$	Preliminary datasheet: updated Tj to 175C max and added switching Loss
1.2	$09 / 29 / 2021$	Released
1.3	$10 / 29 / 2021$	Updated Dynamic Ron figure 20

