



90 - 265Vac input; 12Vdc output; 150W Output Power



## Applications

- Telecommunications equipment
- Embedded Computing
- Storage Systems
- Industrial equipment

### Features

- Compact size 50.8 mm x 101.6 mm x 36.1 mm
   (2 in x 4 in x 1.4 in) with density of 13.4W/in<sup>3</sup>
- Universal AC Input Range (90 265VAC)
- Output voltage of 12V (adjustable -2.5/+5%)
- Maximum output current of 12.5A@ 12Vout (150W)
- High efficiency
- Full load capability at 75°C and 1m/s (200LFM) airflow with derating at higher temperatures or lower airflows
- Output overcurrent protection (non-latching)
- Overtemperature protection
- Output overvoltage protection
- Up to 11ms of holdup time
- Active power factor corrected input
- Conducted EMI meets CISPR22 (EN55022) and FCC Class B requirements
- Meets IEC61000-4-5, Level 4 (2kV/4kV)
- Compliant to RoHS II EU "Directive 2011/65/EU"
- UL and cUL approved to UL/CSA60950-1, TUV (EN60950-1), CE Mark (for LVD) and CB Report available
- ISO\*\* 9001 and ISO 14001 certified manufacturing facilities

### Description

In a small  $2 \times 4$  inch footprint, the 12Vdc single-output CLP0112 open frame power supply delivers greater than 90 percent typical power efficiency and full load output at 75°C. With its small size, the CLP series is specifically designed to handle power challenges associated with tight space and low airflow. The CLP series utilizes a unique design approach at this power level, leveraging zero voltage switching techniques in conjunction with quasi-resonant power factor correction (PFC) circuits. Protection features include overcurrent (OCP), overvoltage (OVP), and overtemperature (OTP).

\* UL is a registered trademark of Underwriters Laboratories, Inc.

- <sup>†</sup> CSA is a registered trademark of Canadian Standards Association.
- <sup>‡</sup> VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
  \*\* ISO is a registered trademark of the International Organization of Standards



90 - 265Vac input; 12Vdc output; 150W Output Power

### **Absolute Maximum Ratings**

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

| Parameter                                                                                                      | Device | Min | Max  | Unit |
|----------------------------------------------------------------------------------------------------------------|--------|-----|------|------|
| Input Voltage - Continuous                                                                                     | All    | 90  | 265  | Vac  |
| For up to 10 seconds max.                                                                                      | All    | 90  | 275  | Vac  |
| Operating Ambient Temperature<br>(see Thermal Considerations section)                                          | All    | -40 | 85   | °C   |
| (in sealed enclosure applications with thermally conductive pad to enclosure, $P_{0,\text{max}}=130\text{W}$ ) | All    | -40 | 55   | °C   |
| Storage Temperature                                                                                            | All    | -40 | 85   | °C   |
| Humidity (non-condensing)                                                                                      | All    | 5   | 95   | %    |
| Altitude                                                                                                       | All    |     | 5000 | m    |
| Isolation Voltage – Input to output                                                                            | All    |     | 3000 | Vac  |
| Input to safety ground                                                                                         | All    |     | 1500 | Vac  |
| Outputs to safety ground                                                                                       | All    |     | 50   | Vac  |

† Ambient temperature outside the sealed enclosure containing the power supply.

### **Electrical Specifications**

| Parameter                                                                                                                                                           | Device     | Min  | Тур     | Max       | Unit                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|---------|-----------|----------------------|
| Operating Input Voltage                                                                                                                                             | All        | 90   | 115/230 | 265       | Vac                  |
| Input Source Frequency                                                                                                                                              | All        | 47   | 50/60   | 63        | Hz                   |
| Input Current ( $V_{IN} = 90Vac$ )                                                                                                                                  | All        |      |         | 3         | Arms                 |
| Input Power Factor (115VAC or 230VAC in at full load)                                                                                                               | All        | 0.95 |         |           |                      |
| Inrush Transient Current ( $V_{IN} = 265Vac$ , $T_{amb} = 25^{\circ}C$ )                                                                                            | All        |      |         | 100       | A Peak               |
| Leakage Current to earth ground ( $V_{IN} = 265Vac$ )                                                                                                               | All        |      |         | 2         | mA                   |
| Output Voltage Setpoint                                                                                                                                             | All        |      | 12      |           | Vdc                  |
| Output Voltage Tolerance (due to set point, temperature variations,<br>load and line regulation)                                                                    | All        | -3   |         | 3         | %                    |
| Output Voltage Adjustment Range                                                                                                                                     | All        | 11.7 |         | 12.6      | Vdc                  |
| Output Load Regulation                                                                                                                                              | All        |      |         | 1         | %Vout                |
| Output Line Regulation                                                                                                                                              | All        |      |         | 0.5       | %Vout                |
| Output Ripple and Noise – measured with 0.1µF ceramic capacitor in<br>parallel with 10µF tantalum capacitor, at 25°C <sup>1</sup><br>Peak-to-peak (20MHz Bandwidth) | All        |      |         | 180       | mV p-p               |
| Dynamic Load Response – 50% to 75% load transient, 0.1A/µs slew<br>rate. Output voltage deviation<br>Settling Time                                                  | All<br>All |      |         | 5%<br>500 | %<br>µs              |
| Output Current                                                                                                                                                      | All        | 0    |         | 12.5      | Adc                  |
| Output Current Limit Inception                                                                                                                                      | All        | 110  |         | 145       | % I <sub>O,max</sub> |
| Maximum Output Capacitance                                                                                                                                          | All        |      |         | 5000      | μF                   |
| Efficiency at 25°C:                                                                                                                                                 |            |      |         |           |                      |
| V <sub>IN</sub> = 230Vac, 20% load                                                                                                                                  | All        |      | 89.3    |           | %                    |
| 50% load                                                                                                                                                            | All        |      | 92.9    |           | %                    |
| 100% load                                                                                                                                                           | All        |      | 92.7    |           | %                    |
| V <sub>IN</sub> = 115Vac, 20% load                                                                                                                                  | All        |      | 87.7    |           | %                    |
| 50% load                                                                                                                                                            | All        |      | 90.9    |           | %                    |
| 100% load                                                                                                                                                           | All        |      | 90.5    |           | %                    |
| Holdup Time <sup>2</sup> – $V_{IN}$ = 115Vac or 230Vac, 100% load                                                                                                   | All        | 11   |         |           | ms                   |

<sup>&</sup>lt;sup>1</sup> Below -25°C, ripple may exceed the specified level. Specification will be met after warm up period of 15s.

<sup>&</sup>lt;sup>2</sup> Holdup time may be lower at cold temperatures

# GE

# CLP0112 Open Frame Power Supply 90 - 265Vac input; 12Vdc output; 150W Output Power

## **General Specifications**

| Parameter                                                               | Device | Symbol | Тур.       | Unit      |
|-------------------------------------------------------------------------|--------|--------|------------|-----------|
| Calculated Reliability based on Telcordia SR-332 Issue 2: Method 1 Case | All    | FIT    | 201.6      | 10º/Hours |
| 3 (VIN=230Vac, Io = 12.5A, TA = 40°C, airflow 200LFM, 90% confidence)   | All    | MTBF   | 4,960,060  | Hours     |
| Weight                                                                  | All    |        | 184<br>6.5 | g<br>oz.  |

## **Feature Specifications**

| Parameter                                                                      | Device | Min  | Тур | Max  | Unit |
|--------------------------------------------------------------------------------|--------|------|-----|------|------|
| Output Voltage Rise Time (from 10 to 90% of final value)                       | All    |      | 4.2 |      | ms   |
| Delay from Input being applied to all outputs being in regulation <sup>3</sup> | All    |      |     | 1000 | ms   |
| Output Overvoltage Protection (for main output currents above 0.1A)            | All    | 13.8 |     | 17   | Vdc  |
| Input Undervoltage lockout <sup>4</sup>                                        |        |      |     |      |      |
| Turn-on Threshold (100% load)                                                  | All    |      | 83  | 90   | Vac  |
| Turn-off Threshold (100% load)                                                 | All    |      | 72  | 88   | Vac  |

# **Environmental Specifications**

| Parameter                             | Device | Specification                             |
|---------------------------------------|--------|-------------------------------------------|
| Conducted Emissions                   | All    | CISPR22 (EN55022) Class B with 3dB margin |
| Radiated Emissions⁵                   | All    | CISPR22 (EN55022) Class B with 3dB margin |
| Input Harmonics                       | All    | EN61000-3-2                               |
| ESD                                   | All    | IEC 61000-4-2, Level 3                    |
| Radiated Immunity <sup>6</sup>        | All    | IEC 61000-4-3, Level 2                    |
| Electrical Fast Transient Common Mode | All    | IEC 61000-4-4, Level 3                    |
| Surge Immunity                        | All    | IEC 61000-4-5, Level 4                    |
| Conducted RF Immunity                 | All    | IEC 61000-4-6, Level 3                    |
| Voltage Dips                          | All    | EN61000 4.11, Level 3, Class B, C         |
| Shock and Vibration                   | All    | IPC-9592B                                 |

<sup>&</sup>lt;sup>3</sup> Met when temperature is above -25°C and restart duration is  $\leq$  20s.

<sup>&</sup>lt;sup>4</sup> Undervoltage lockout threshold may vary with output load current level – decreasing as load goes lower

<sup>&</sup>lt;sup>5</sup> Shall be met when tested in a suitable enclosure

<sup>&</sup>lt;sup>6</sup> Shall be met when tested in a suitable enclosure

# GE

# CLP0112 Open Frame Power Supply

90 - 265Vac input; 12Vdc output; 150W Output Power

## **Characteristic Curves**

The following figures provide typical characteristics for the CLP0112 power supply

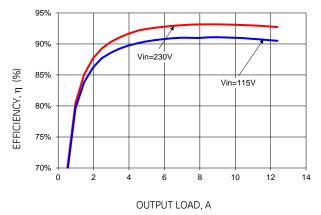



Figure 1. Power Supply Efficiency versus Output Current.

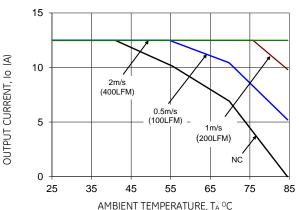
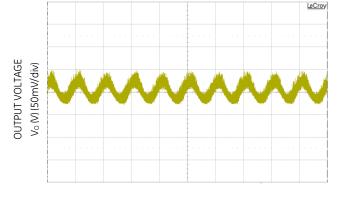




Figure 2. Derating Output Current versus Ambient Temperature and Airflow. Data shown for 115VAC in, at 230VAC in derating is the same or better. For derating at other input voltages, consult the GE Technical representative.



TIME, t (10ms/div) Figure 3. Typical output ripple and noise ( $V_{IN} = 230Vac$ , 100% load ).

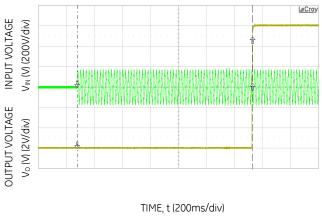



Figure 5. Typical Start-up (VIN = 115Vac).

OUTPUT CURRENT, OUTPUT VOLTAGE lo (A) (5 Adiv) vo (V) (100mV/div)

TIME, t (5ms /div)

Figure 4. Transient Response to Dynamic Load Change from 50% to 100% at Vin = 230Vac.

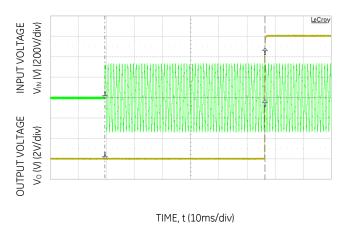
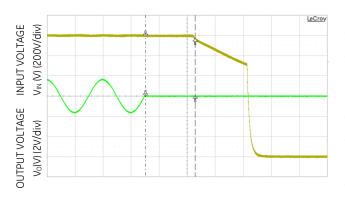
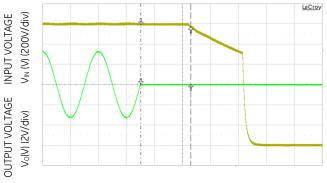
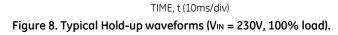



Figure 6. Typical Start-up (VIN = 230Vac)


# GE


load).

# CLP0112 Open Frame Power Supply 90 - 265Vac input; 12Vdc output; 150W Output Power


## **Characteristic Curves (cont.)**

The following figures provide typical characteristics for the CLP0112 power supply





TIME, t (10ms/div) Figure 7. Typical Hold-up waveforms (VIN = 115V, 100%



90 - 265Vac input; 12Vdc output; 150W Output Power

### **Safety Considerations**

The CLP0112 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand-alone product. The power supply meets Class 1, IEC60950, EN60950, with the following deviations: Nemko. UL 60950 (Recognized Component) C-UL (Canadian Approval by UL).

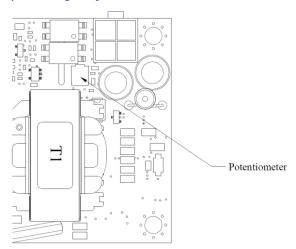
#### **Feature Descriptions**

#### **Overcurrent Protection**

To provide protection in a fault condition (output overload), the power supply is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The power supply operates normally once the output current is brought back into its specified range.

#### **Overvoltage Protection**

Overvoltage protection is a feature of the CLP0112 power supply that protects both the load and the power supply from an output overvoltage condition. When an overvoltage occurs, the power supply shuts down and latches off. It is then necessary to recycle the input to restart the power supply when this protection is activated.


#### **Overtemperature Protection**

The CLP0112 also features overtemperature protection in order to provide additional protection in a fault condition. The power supply is equipped with a thermal shutdown circuit which detects excessive internal temperatures and shuts the unit down. Once the power supply goes into overtemperature shutdown, it will cool before attempting to restart. The overtemperature protection circuit will typically activate when the unit is operated at 150W output with an ambient temperature of 80°C and 1m/s (200LFM) airflow. Please note that at ambient temperatures of 75°C or higher and very low airflow conditions, the unit may need to have input voltage recycled before it turns back on from an OTP fault.

#### Input Undervoltage Lockout

At input voltages below the input undervoltage lockout limit, power supply operation is disabled. The power supply will begin to operate at an input voltage above the undervoltage lockout turn-on threshold. Note that the undervoltage lockout limits are load dependent and the power supply turns ON and can operate at much lower input voltage levels when at light or no load.

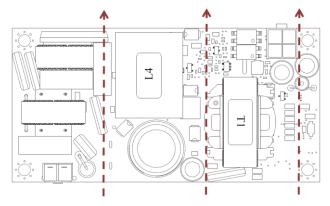
#### **Output Voltage Adjustment**



# Fig. 9. Diagram showing location of the potentiometer used to adjust the power supply output voltage.

The output voltage can be adjusted between 11.7V and 12.6V using a potentiometer on the power supply. See Fig. 9 for a diagram showing location of the potentiometer.

90 - 265Vac input; 12Vdc output; 150W Output Power


### **Thermal Considerations**

The power supply can be operated in a variety of thermal environments; however sufficient cooling should be provided to ensure reliable operation.

Considerations include ambient temperature, airflow, power supply dissipation and the need for increased reliability. A reduction in the operating temperature of the power supply will result in increased reliability. The thermal data presented here is based on measurements taken in a wind tunnel.

#### Heat Transfer via Convection

Increased airflow through the power supply enhances the heat transfer via convection. Figure 10 shows the preferred airflow direction. Contact your GE technical representative for derating information in other airflow directions.



#### Fig. 10. Preferred airflow direction for cooling.

#### **Operation In a Sealed Enclosure**

The CLP0112 power supply can also be operated in a sealed enclosure provided proper means for removing heat from the power supply are used. Figure 11 shows an arrangement where a thermally conductive pad is used to transfer heat from the bottom of the power supply into the enclosure. Under such conditions, the power supply is capable of reduced power operation as shown in Table 1. Note that the Ambient Temperature shown in Table 1 is that outside the sealed enclosure, the CLP0112 may see higher ambient temperatures.

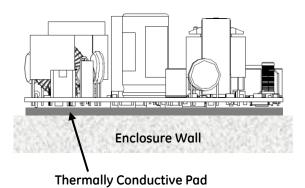
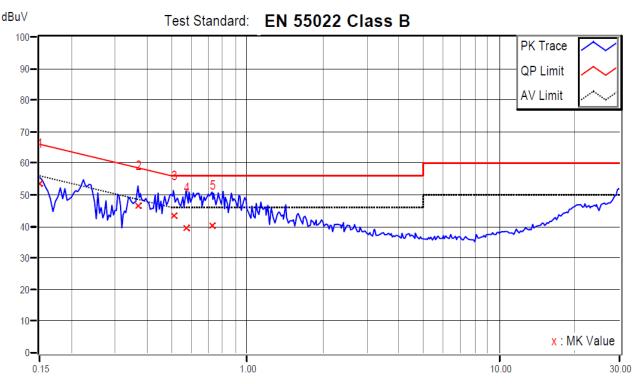



Fig. 11. Example arrangement of the CLP0112 for sealed enclosure applications.

#### Table 1. Output Power Capability when the CLP0112 is operated in a sealed enclosure with thermal pad for conduction cooling.


| Ambient Temperature (°C) | Max. Output Power (W) |
|--------------------------|-----------------------|
| 25                       | 150                   |
| 40                       | 150                   |
| 55                       | 130                   |

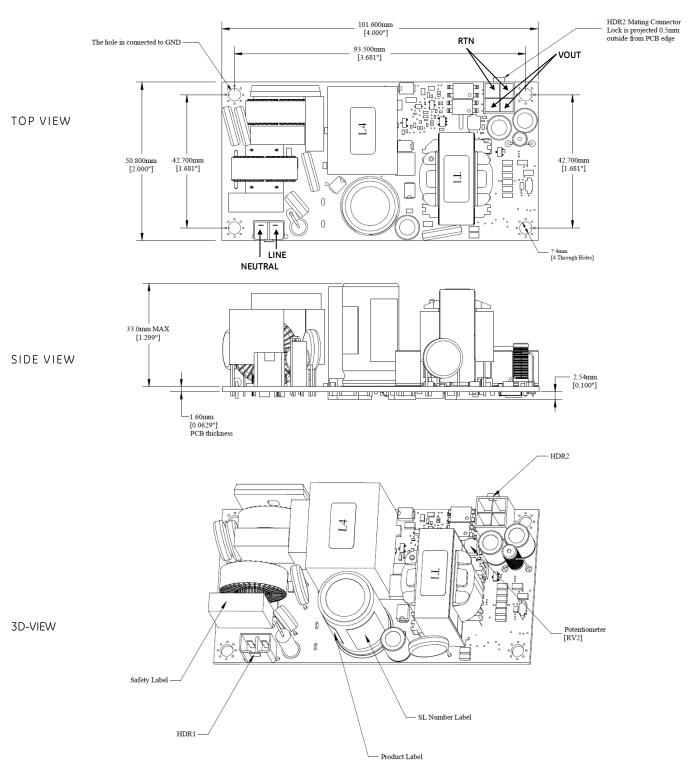
90 - 265Vac input; 12Vdc output; 150W Output Power

### **EMI performance**

All CLP0112 power supplies are specified to meet conducted Class B EMI requirements per CISPR 22 (EN55022) with at least 3dB of margin. Results of tests conducted without any external filtering are shown below.

#### CLP0112FPXXXZ01A (115VAC in, 12V @ 150W out, Negative of Output Grounded)




CLP0112FPXXXZ01A (230VAC in, 12V @ 150W out, Negative of Output Grounded)



# CLP0112 Open Frame Power Supply 90 - 265Vac input; 12Vdc output; 150W Output Power

### **Mechanical Outline**

Dimensions are in millimeters. Tolerances: x.x mm ± 0.5mm [unless otherwise indicated] x.xx mm ± 0.25mm



# CLP0112 Open Frame Power Supply 90 - 265Vac input; 12Vdc output; 150W Output Power

# Connector Information

| Connector                  | Connector on Power Supply           | Mating Connector                    |
|----------------------------|-------------------------------------|-------------------------------------|
| AC Input Connector (HDR1)  | 5-1376382 from TE or equivalent     | 1376388-1 from Tyco or equivalent   |
| DC Output Connector (HDR2) | 39-28-8040 from Molex or equivalent | 39-01-3048 from Molex or equivalent |

### **Pinout Information**

| AC Input Connector (HDR1) |         | DC Output Connector (HDR2) |     |  |
|---------------------------|---------|----------------------------|-----|--|
| Pin 1                     | Line    | Pin 1                      | VO  |  |
| Pin 2                     | Neutral | Pin 2                      | VO  |  |
|                           |         | Pin 3                      | RTN |  |
|                           |         | Pin 4                      | RTN |  |

90 - 265Vac input; 12Vdc output; 150W Output Power

### **Ordering Information**

Please contact your GE Sales Representative for pricing, availability and optional features.

#### Table 2. Device Codes

| Device Code                            | Input<br>Voltage Range | Output Voltage | Output Current | Temperature Range | Comcode          |
|----------------------------------------|------------------------|----------------|----------------|-------------------|------------------|
| CLP0112FPXXXZ01A                       | 90 – 265Vac            | 12.0Vdc        | 12.5A          | -40 to 85°C       | 150039432        |
| CLP0112FPXXXZ02A<br>(conformal coated) | 90 – 265Vac            | 12.0Vdc        | 12.5A          | -40 to 85°C       | CLP0112FPXXXZ02A |

# Contact Us

For more information, call us at

USA/Canada:

+1877 546 3243, or +1 972 244 9288

Asia-Pacific:

+86.021.54279977\*808

Europe, Middle-East and Africa:

+49.89.878067-280

#### www.gecriticalpower.com

GE Critical Power reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

February 14, 2017

imagination at work

©2017 General Electric Company. All International rights reserved.



 Inselkammerstraße 10
 Ho

 D-82008 Unterhaching
 CH

 Tel: +49 (0)89 614 503 10
 Tel

 Fax:+49 (0)89 614 503 20
 Fax

 E-Mail: power@hy-line.de
 E-N

 www.hy-line.de
 www

Hochstraße 355 CH-8200 Schaffhausen Tel: +41 (0)52 647 42 00 Fax:+41 (0)52 647 42 01 E-Mail: power@hy-line.ch