DATASHEET

CC12500H3C380TEZ-GM High-Efficiency **Water-Cooled Rectifier**

36, 3-Wire 400/480V_{AC} Input; Default Output: 380V_{DC} (±190V) @ 12,500W, 12V_{DC} @ 1.8A The CC12500H3C380TEZ-GM is a high

Ihr Vertriebspartner

LEADER IN TECHNOLOG

LINE

HY-LINE Power Components Vertriebs GmbH

Inselkammerstr. 10 D-82008 Unterhaching (C) +49 89/ 614 503 -10 power@hy-line.de

HY-LINE AG

Hochstrasse 355 CH-8200 Schaffhausen @ +41 52 647 42 00 info@hy-line.ch

RoHS Compliant

Applications

- Supercomputers
- 380Vdc data centers
- Telecom central offices Industrial systems

Targeted countries

Australia, Canada, European Union, India, Japan, New Zealand, South Korea, Taiwan, USA

Features

- Efficiency 96.0% peak typical
- Compact form factor with 24W/in³ density
- Nominal Dimensions 60.3 x 203.2 x 711.2 mm (2.4 x 8.0 x 28.0in)
- AC Input 3-wire, 3Φ-400/480Vac, 12,500W Rated Output
- Power factor correction (meets EN/IEC 61000-3-2 and EN 60555-2 requirements)
- High Resistance Mid-Point Ground (HRMG) ±190V_{DC} Output with Internal HRMG Fault detector circuit
- **RS-485** Communication Protocol
- Output voltage programmable from 360-400V_{DC} .
- Output overvoltage and overload protection •
- AC Input overvoltage and undervoltage protection
- Over-temperature warning and protection .
- Redundant, parallel operation with droop load sharing •

UL is a registered trademark of Underwriters Laboratories, Inc.

- CSA is a registered trademark of Canadian Standards Association. VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
- This product is intended for integration into end-user equipment. All CE marking procedures of end-user equipment should be followed. (The CE mark is placed ξ on selected products.) **
- ISO is a registered trademark of the International Organization of Standards

efficiency, true 3 phase, 3 wire (Delta) AC input, 380Vdc HVDC output, liquid cooled rectifier power supply. The true three phase input eliminates any neutral connection, and ensures tight phase current balancing. The rectifier achieves very high efficiency, >96%, reducing the cooling demands and providing beneficial OpEx savings. The rectifier meets world-wide safety. environmental. and regulatory requirements. The physical package is designed to allow very flexible positioning into system cabinets, or racks. The rectifier can be mounted in both horizontal and vertical orientations, and its thin profile allows for minimal width when mounted vertically along cabinet's sides, or maximum stacking density when mounted horizontally in equipment racks. The width allows two rectifiers to be mounted side by side in standard 19 inch racks.

- Redundant +12V_{DC} @ 1.8A Aux power
- Remote ON/OFF
- Integrated liquid-cooled cold plate
- Hot insertion/removal (hot plug)
- Redundant DC output Interlock .
- Three front panel LED indicators
- ANSI/UL* 62368-1 and CAN/CSA† C22.2 No. 62368-1 Recognized, DIN VDE⁺ 0868-1/A11:2017 (EN62368-1:2014/ A11:2017)
- CE mark[§] •
- Meets FCC part 15 subpart B, EN55032 Class B standards
- Meets EN61000 immunity and transient standards
- Shock & vibration: Meets IPC 9592 Class II standards
- Dripless Liquid Quick Connects Designed for Electronics Applications

Page 1

Technical Specifications

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only; functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Symbol	Min	Max	Unit
Input Voltage: Continuous	V _{IN}	0	528	V_{AC}
Storage Temperature (ensure that all liquid has been removed from cooling	T _{stg}	-40	85	°C
I/O Isolation voltage to Frame (100% factory Hi-Pot tested)			2121	V _{AC}

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, V_0 =380 V_{DC} , resistive load, and temperature conditions. To meet measurement accuracy a warm up time of 1hr may be required

Parameter	Symbol	Min	Тур	Max	Unit
Operating Voltage Range (3 Φ delta with safety frame ground)	VIN	360	400/480	509	V_{AC}
Frequency	F _{IN}	47		63	Hz
Input current per phase (maximum at Vin 360V _{AC} , W _{OUT} 11700W)	I _{IN}			20	A _{rms}
Input current phase unbalance [load > 50% of FL]				2	%
Inrush Transient (per Φ at 480V _{RMS} , 25°C, excluding X-Capacitor charging)	I _{IN}		75	80	A _{pk}
Leakage Current (per Φ, 530V _{AC} , 60Hz)	I _{IN}			5 ¹	%
Power Factor (50 – 100% load)	PF	0.98	0.995		
Total Harmonic Distortion (50 – 100% load)	THD			5 ²	%
Efficiency (480V _{AC} @ 25°C) 10% load 20% load 50% load 100% load	η		90% 94% 96% 95%		%
Holdup time (V _{in} = 360V _{rms} , V _{out} ≥ 320V _{DC} , 75% constant power load)	Т	20	24		ms
Isolation (per EN62368) Input – Output	V	3000			V_{ac}
Input-Chassis/Signals	v	2000			Vac

¹Leakage current shall not exceed 5% of the nominal input current per phase under testing. Appropriate marking requirements of ANSI/UL* 62368-1 and CAN/ CSA† C22.2 No. 62368-1 Recognized, DIN VDE‡ 0868-1/A11:2017 (EN62368-1:2014/A11:2017)

 $^2\text{Total}$ harmonic distortion <6.5% when T_{water-inlet} <5°C.

380V_{DC} MAIN OUTPUT

Parameter			Symbol	Min	Тур	Max	Unit
Output Power	wer $(360 - 432V_{AC} - 3\Phi, T_{INLET} = 2-50^{\circ}C)$		14/			10,417	W_{DC}
	(432 – 509V _{AC} – 3	Ф, Т _{INLET} = 2–50°С)	Wout			12,500	W_{DC}
Output Voltage Fa	ctory Setpoint (480) Vac in, no load, 25°C)			385		V _{DC}
Output Voltage Pro Resolution	ogramming Range	(no load)		365	0.5	400	V _{DC} V _{DC}
Output Regulation Load (programm			V _{OUT}		0.303		V/A
Line, temperatu	re & aging			-0.5		+0.5	%
Output Current (Va	ac=480, T _{INLET} = 45°	C) $V_{OUT} = 360V_{DC}$		1		34.7	
(all 12,500W)		$V_{OUT} = 380 V_{DC}$	l _{Out}			33	A _{DC}
		V _{OUT} = 400V _{DC}				31.3	
Output Ripple		RMS (5Hz to 20MHz)	N/			90	mV _{rms}
(20MHz bandwidt	h, load > 1A)	Peak-to-Peak (5Hz to 20MHz)	V _{OUT}			800	mV _{p-p}

Page 2

© 2021 ABB. All rights reserved.

Electrical Specifications (continued)

Parameter		Symbol	Min	Тур	Max	Unit
Turn-On (monotonic from 30–100)% of Vnom)					
	Delay	Т		5		S
	Rise Time			90		ms
Output	V _{OUT}			2	%	
Load Step Response $\Delta I = V_{IN} = 400-480V_{AC}, 25^{\circ}C$, loa ΔV	d step 50% ↔100%, di/dt = 1A/µs]	I _{out} V _{out}	-4		50 4	%FL %
Settling Time to normal regulat	ion	Т			1	ms
Overload Protection						
Current Limit (constant-current regulation) (V _{IN} = 432-509 Vac) (V _{IN} = 360-432 Vac)		I _{OUT}		37.4 35.0		A _{DC}
Fast Power Limit ³ (V _{IN} = 480 Slow Power Limit ³ (V _{IN} = 480	W _{OUT}		13,500 12,500		W_{DC}	
Undervoltage Shutdown ⁴ (a Severe Undervoltage Shutd	Vout	250 0		320 250	V_{DC}	
Short-circuit protection		No damage				
Startup delay				utdown is delaye rtup of multiple		
	200ms delayed shutdown	-)	410	420	430	
	(default) Immediate shutdown	Vout	> 440			V _{DC}
Overvoltage Shutdown	Programmable range		380		420	
5	Latched shutdown	After 3 restart	attempts w	ithin a 30 sec wir	ndow, unit la	tches OFF
	Restart delay		3.5	4	5	sec
Over-Temperature Power Reduct	,					
Inception		TINTERNAL		90 (rising)		°C
Recovery				80 (falling)		-
Typical Control Range		Vout	320	90 (.ag)	400	VDC
Rate of Change		Wout	020	±10		W/sec
Over-Temperature Warning (OTM	/) LED indication - see Table 5)	TCOMPONENT		>90		°C
Over-Temperature Shutdown Restart	,	T _{COMPONENT}		100 (rising) 70 (falling)		°C
Restart/Reset conditions		Loss of input :	> 100ms or C	Dutput OFF follo	wed by ON c	ommand

³In Power Limit/Reduction mode, the output-voltage setpoint is lowered until the target output power is achieved. ⁴with one soft-start attempt after 10 seconds

12V_{DC} Auxiliary output⁵

Symbol	Min	Тур	Max	Unit
V _{OUT}		12		V _{DC}
	-10		+10	%
	0		1.8	А
		15	16.5	V _{DC}
	105		135	%FL
	, ,	V _{OUT} -10 0	V _{OUT} 12 -10 0 15	V _{OUT} 12 -10 +10 0 1.8 15 16.5

⁵12V_{DC} auxiliary output will recover after over-current limit shutdown only if the load is less than 0.8A and output external capacitance is 500uF max. With high load and output capacitance, the input power must be recycled to get 12V_{DC} auxiliary output recovery.

General Specifications

Parameter	Min	Тур	Max	Units	Notes
Lippo alead Maight			13	Kgs	
Unpacked Weight			(28)	(Lbs)	

Environmental Specifications

Parameter	Min	Тур	Max	Units	Notes
Coolant Water Inlet Temperature ^{6,7}	2		50	°C	
Operating Ambient Air Temperature	2		50	°C	
Cooling Flow Rate	0.26		0.5	Gpm	Optional inlet orifice is available to
Cooling Flow Rate	1.0		2	L/min	provide minimum flow rate
Cold Plate Inlet Pressure			100	psi	
Cold Plate Pressure Drop		10		psi	at the minimum flow rate
Operating Altitude			3000 / 10k	m / ft	
Non-operating Altitude			9000 /30k	m / ft	
Shock and Vibration Operational		Meets IPC	9592 Class II, Sec	tion 5 and GR	-63_CORE, Level 3 requirements
Earthquake Rating	4			Zone	Meets GR-63_CORE requirements ⁸

⁶Coolant must remain free of algae and corrosion products. The use of suitable inhibitors in the coolant is recommended, compatible with copper tubing. Fullrated output power is available up to 50°C inlet water temperature (lower for coolants other than water).

⁷Water connections are indicated by color on faceplate (blue – cool inlet, red – warm exit). Water delivery method should include strain relief feature to mitigate the risk of water leak in the end product. Leak detection and protection mechanisms should be used to mitigate the effect of water leaks. Care must be taken to prevent water clogs that could reduce the water pressure or restrict flow.

⁸When installed in a Zone 4 rated cabinet.

Parameter	Function	Stan	dard	Level	Criteria	Test
	Conducted emissions ⁹	EN55032, FCC part 1	15	А		0.15 – 30MHz
		EN61000-3-2				0 – 2 KHz
		Telcordia GR1089-C	Telcordia GR1089-CORE			
AC input	Radiated emissions ⁹	EN55032/CISPR32, FCC part 15 Subpart B, ICES-003, KN22, CNS 13438		B – 3dB margin		30 – 10000MHz
	Input Harmonics	EN61000-3-2		А		
		EN61000-4-11		Class 3	А	-30% (from 400Vac) fo 10ms
	Line sags and interruptions	Output will stay abo load	ve 320V _{DC} @ 75%		A	25% sag from nominal (400Vac) for 0.5 sec
					А	1 cycle interruption
AC Input		EN61000-4-5, Level	4, 1.2/50µs – error		А	4kV L-E
Immunity		free			А	2kV L-L
	Lightning surge		100kHz ring wave	3, Category B	B, Table 2	6kV/0.5kA
		ANSI C62.41-2002	1.2/50µs-8/20µs	3, Category B	B, Table 3	6kV, 3kA
			5/50ns EFT burst		B, Table 6	2kV, severity II
	Fast transients	EN61000-4-4		3	А	5/50ns, 2kV (common mode)
	Conducted RF fields	EN61000-4-6		3	А	130dBµV, 0.15-80MHz, 80% AM
Enclosure	Radiated RF fields	EN61000-4-3		3	А	10V/m, 80-1000MHz, 80% AM
immunity	Power Frequency Magnetic Fields	EN61000-4-8			А	30A/m
	ESD	EN61000-4-2		4	А	8kV contact, 15kV air

EMC [Surges and sags applied one Φ at a time and all 3Φ 's simultaneously; phase angles 0°, 90°, 270°]

⁹Tested with ABB shelf, external AC input filter, and shielded DC output cables.

Criteria Performance

- A No performance degradation
- B Temporary loss of function or degradation not requiring manual intervention
- C Temporary loss of function or degradation that may require manual intervention
- D Loss of function with possible permanent damage

Feature Descriptions

Hot swap: The rectifier is equipped with an interlock switch which operates in a redundant scheme with the Interlock short connector pin to ensure output voltage is not present on the output connector while removing or inserting the rectifier into the shelf.

Power limiting: There are three distinct mechanisms which trigger power limiting, in which the output voltage is lowered below the programmed value only as much as necessary to achieve the target output power. The purpose of power limiting is to protect the rectifier while giving the larger system time to reduce the load and avoid the disruption of a rectifier shutdown.

The first two mechanisms described below are for overload---above the rectifier rating---while the third occurs below the rectifier rating to prevent overheating. In each case if the load is reduced, the output voltage is raised until it returns to its normal programmed value, ending power limiting. The Over -Power Warning signal described in the next section is asserted for the first two limits below.

- 1. **Fast Power Limit** reduces output power as quickly as possible to the threshold value, essentially clamping output power.
- 2. Slow Power Limit is triggered by a trainingaverage power calculation, to allow short overloads that are below the fast power limit while preventing extended operation above the rectifier rating. Depending on the severity of the overload & prior load, this limit acts after approximately 2-3 seconds, reducing output power to the rated value over a few more seconds. When in Slow Power limit, the rectifier has a one minute on-time followed by a two minute off-time. This cycle repeats until output current is reduced below the slow power limit threshold.
- 3. Over-Temperature Power Reduction to below the rectifier power rating occurs when the rectifier internal temperature approaches its operating limit. Output voltage is lowered gradually until the internal temperature falls below the inception threshold. The output voltage is regulated at this level until the internal temperature then falls below the "recovery" threshold. In recovery, the output voltage is

gradually raised back to the programmed value, unless the "inception" threshold is exceeded again. If the OT power reduction fails to arrest the temperature rise, e.g. for a total loss of cooling, an over-temperature shutdown is triggered.

Control and Status

The Rectifier provides two means for monitor/ control, analog and the ABB RS-485 protocol.

Analog Control Signals

Rectifier Enable: Controls the main 380V_{DC} output. This pin must be pulled low to LGND to turn ON the power supply. The power supply will turn OFF if either Rectifier Enable or Interlock are released.

Interlock Feature: The rectifier operates a redundant interlock scheme using a handle-actuated switch and an interlock pin. Opening the handle turns off 12V and communications will be lost. The interlock pin is a short signal pin that shuts down the rectifier completely upon extraction. The interlock pin must be connected to SEC_RTN on the system side. The interlock features work in conjunction to ensure that no arcing or connector contact damage occurs to the connector during the hot insertion/extraction process.

Slot Identification: Up to 10 different units are selectable by connecting a resistor between SLOT_ID and SEC_RTN. Internally this pin is pulled up to 3.3V (±3%) by a 10 kOhm (±1%) resistor. The full tolerance range of the chosen resistor should fall between the minimum and maximum values of Rs listed below to ensure the correct slot number is identified.

Slot_ID	Min V _s	$MaxV_S$	$\operatorname{Min} R_{S}$	MaxRs	Std 1%
			(ΚΩ)	(ΚΩ)	(ΚΩ)
Invalid	0	0.300	0	1.00	0
0	3.192	3.195	295.56	304.29	301
1	3.269	3.326	OPEN	OPEN	OPEN
2	1.231	1.256	5.95	6.14	6.04
3	1.953	1.991	14.50	15.21	14.7
4	0.798	0.816	3.19	3.29	3.2
5	1.736	1.775	11.10	11.64	11.4
6	0.939	0.956	3.98	4.08	4.02
7	1.482	1.511	8.15	8.45	8.25
8	2.544	2.583	33.65	36.03	34.8
9	2.844	2.894	62.37	71.28	66.5

Analog Status Signals

Module Present: This signal is used as an OUTPUT signal by the power supply to notify the system controller that a power supply is physically present in the slot. This signal pin is pulled down to LGND by the power supply.

Over-Power Warning (OPW):This signal is HI during normal operation but asserted LO during operation at output power greater than the rectifier rating. This enables load power to be reduced before the Slow Power Limit acts.

If the overload is less than the rectifier Fast Power Limit, OPW is asserted after some delay to allow for short overloads without disruption. OPW is triggered by a training-average power calculation, which shortens the delay for higher loads during and/or before the overload. For example, a repeating 2 seconds of 13.1 kW load followed by 0.8 second of 6.65 kW will NOT trigger OPW, but lengthening the overload pulse to 2.3 seconds WILL trigger OPW intermittently after a few cycles.

If the overload is greater than the Fast Power Limit, OPW is asserted immediately and power is reduced to the fast threshold without warning.

ABB RS-485 protocol

ABB will provide separate application notes on the RS-485 based protocol physical, data, and link layers for users to interface to the rectifier. Contact your local ABB representative for details.

Application Layer: The controller interacts with the system devices using the READ, WRITE, and READ RESPONSE packets. Each packet carries a unique body that details the variables and values of interest in the system device. A READ packet transmits the variable name to the system device, which then returns a value to the controller with the READ RESPONSE packet. The WRITE packet transmits a variable name and new value to a system device, which records it. The WRITE packet is also used to cause specific actions to occur within the device. The variable names and commands that are found in the packet bodies define the Galaxy Power System application. The tables following this section will detail the specific packet body contents. First described are the basic data types used widely in the application. Generic variables that all devices must support are then described followed by the unique variables associated with specific devices.

Table 1 - Basic Data Types

Data Types	Data Type Definition
null	no value
uint8_t	8-bit unsigned integer
uint16_t	16-bit unsigned integer
int16_t	16-bit signed integer
uint32_t	32-bit unsigned integer
int32_t	32-bit signed integer

Note: All multi-byte integer data types are BIG ENDIAN format (MSB, LSB)

Signed numbers are in two's complement format.

Table 2 - Device Group Number Definitions

Variable Name	Group	Description
MASTER_ADDR	00h	Plant controller
BROADCAST	FFh	Broadcast address to all devices
RECTIFIER_ADDR	E8h	High voltage rectifier

Table 3 - Variable Allocation

Variable Range	Description
00h to 0Ah	Common variables (0Ah read is not common, just write)
OBh to 9F	Group specific variables, common within a given group
0Ah to AFh	Upgrade related commands
0Bh to DFh	Group specific variables
0Eh to FFh	Device specific commands typically for lab and debugging. May not be common within a group

Scaling: Analog quantities are scaled (multiplied) by the following factors, then truncated to an integer:

٠	DC voltage and current	64
•	AC voltage	100
•	AC current	200
•	Temperature in °C	1
•	Watts	1

Table 4 – RS-485 Variable List

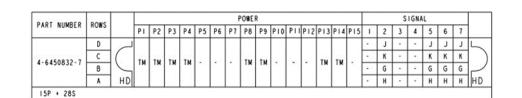
Variable Name	Num	Len	Data Type	Description
DUMMY_RW	00h	00h	null	Used to exercise the protocol for test purposes.
SERIAL_NUMBER_RW	01h	12h	uint8_t[18]	Serial number as an array of 18 ASCII characters.
				(e.g. LBGEPE16KZ00000000)
GROUP_ADDRESS_RW	02h	01h	uint8_t	Rectifier group address E8h (multi-cast address)
COMCODE_RW	03h	0Bh	uint8_t[11]	Internal part number up to 11 ASCII characters:
				(e.g. 150047061)
PROTOCOL CONTROL W	04h	01h	uint8_t	01h – forces devices to drop the link
STATION_TYPE_R	05h	14h	uint8_t[20]	Product code, up to 20 ASCII characters
				(e.g. CC12500H3C380TEZ-GM)
SERIES_RW	06h	07h	uint8_t[7]	Series identifier, up to 7 ASCII characters (e.g. 1:0)
APPLICATION_VERSION_R	07h			Software version:
Argument:		01h	uint8_t	70h returns PFC version, 73h returns DCDC version
Response:		07h	uint8_t[7]	Format: major,minor,month,day, year,hours, minutes
				Note: If no argument then DCDC version is returned
reserved	08h			Reserved
TIMEOUT_SCALE_RW	09h	01h	unit8_t	No-activity link timeout in seconds. Default: 10
LAMP_TEST_W	0Ah	00h	null	Lamp Test command
I_R	0Ah	02h	uint16_t	Total output current of rectifier
T_INTERNAL_R	0Bh	01h	unit8_t	Most critical temperature
STATUS_R	0Ch	02h	uint16_t	Device status
ORFET_FAIL_STAT				0001h: 1= ORing FET failure detected
ACF_STAT				0002h: 1 = AC out of range
VOUT_UNBALANCE				0004h: 1 = Vout unbalance warning
TA_STAT				0008h: 1 = Over temperature shutdown
RFA_STAT				0010h: 1 = Rectifier failure detected
AC_LOW_LINE_STAT				0020h: 1 = low input-voltage range (< 432 Vac; power limited)
				0040h: Reserved
				0080h: Reserved
INTERLOCK_STAT				0100h: 1 = interlock is open
TRH_STAT				0200h: 1 = Standby from controller requested
HVSD_STAT				0400h: 1 = Over voltage shutdown (requires restart)
ON_STAT				0800h: 1 = On and producing power

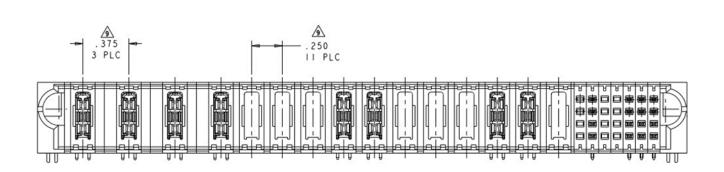
				1000h: Reserved				
ID CHANGED S	ТАТ			2000h: Reserved				
				4000h: Reserved				
CL S				8000h: 1 = in current limit or power limit				
VSET RW	0Eh	02h	uint16 t	Power up default voltage set-point				
CMD_W	0Eh	02h	uint16 t	Device control				
STANDBY_C		OEII	diffei0_e	0001h: Place rectifier into Standby				
 ON_C				0002h: Release rectifier from Standby				
_				0004h: Reserved				
				0008h: Reserved				
				0010h: Reserved				
RESTART_C	MD			0020h: Restart after over voltage or over current				
LAMPTEST_C	MD			0040h: Lamp test				
				0080h: Reserved				
FAULT_LED_	ON			0100h: Request fault LED ON				
FAULT_LED_C	DFF			0200h: Request fault LED OFF				
				0400h: Not used				
				0800h: Not Used				
				1000h: Not Used				
				2000h: Not Used				
				4000h: Not Used				
RESET_ENERGY_C	MD			8000h: Reset energy counter				
CAPACITY_R	11h	02h	uint16_t	Nominal current capacity of rectifier (Idc x 64)				
VCMD_RW	13h	02h	uint16_t	Present output voltage setting				
VOP_R	20h	02h	uint16_t	Output voltage measurement				
VACIN_RMS_R	29h	06h		Line-to-line AC RMS voltage measurements				
			uint16_t	Vab				
			uint16_t	Vbc				
			uint16_t	Vca				
IACIN_RMS_R	2Ah	06h		AC RMS phase current measurements				
			uint16_t	Phase A				
			uint16_t	Phase B Phase C				
AC_POWER_R	37h	02h	uint16_t uint16_t	AC input power in Watts				
	39h	02h	uint32_t	Hours on and producing power				
ON TIME R				Block read				
ON_TIME_R BLOCK_READ_R	73h	0Bh		Biociticad				
	73h	0Bh	Uint16 t	Status word				
	73h	OBh	Uint16_t uint16_t					
	73h	OBh	uint16_t	Status word Vout measurement				
	73h	OBh	_	Status word				

Table 5: Alarm and LED state summary

		Power Supply LED Stat	te
Condition	AC OK Green	Fault Red	DC OK Green
ОК	1	0	1
Over-Temperature Warning (OTW) 5°C before shutdown)	1	Blinks	1
Thermal Shutdown	1	1	0
Blown AC Fuse in Unit	Blinks	1	0
AC Present but not within limits	Blinks	0	0
AC Lost (indicated for 0.5-1 min)	Yellow	0	0
Boost Stage Failure	1	1	0
Over Voltage Latched Shutdown	1	1	0
Over Current	1	0	Blinks
Non-catastrophic Internal Failure	1	1	1
Standby (remote)	1	0	0
Output Unbalance	1	0	Blinks Yel / Grn
Boot Block Mode	0	Blinks	0

Table 6: Signal Definitions


Pin	Function	Label	Туре	Description			
2A	Interlock	INTERLOCK	Input	Short pin that must be connected to SEC_RTN externally to enable the output. This signal provides the last-to-make and first-to-break function to prevent arcing during hot plug and hot disengagement.			
2B	Slot identification	SLOT_ID	Input	Set to one of 10 levels by an external resistor to SEC_RTN.			
2C	Secondary return	SEC_RTN	Reference	Filtered connection to Vout–.			
(Signals above are referenced to SEC_RTN; signals below are referenced to LGND)							
5B	Over-Power Warning	OPW	Output	Open-drain FET; normally open			
5D, 6D	Standby power	12V_AUX	Output	12V @ 1.8A provided for external use; return is LGND. This output is always ON and OR'ed for paralleling.			
6B	RS485 A signal	RS485_A	1/0	RS485 "+" or non-inverting signal line.			
6C	RS485 B signal	RS485_B	I/O	RS485 "–" or inverting signal line.			
7A	Rectifier Enable	ENABLE	Input	When shorted to LGND, turns ON the main output			
7B	Module Present	MOD_PRES	Output	Short pin connected to LGND, notifies the system that this module is present,			
7C, 7D	Logic Ground	LGND	Reference	Isolated from the main output & SEC_RTN.			


Connector

Installed in rectifier: TE 4-6450832-7 (pictured below)

• Example mate: 1 ea. TE 1-1892903-9 housing + 8 ea. TE 1600903-1 power receptacles + 7 ea. TE 1600902-1 four-position signal inserts

- NO CONTACTS LOADED

	Facing rear of module																					
	AC II	NPUT							DC	ουτι	PUT							SIGNALS				
P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	1	2	3	4	5	6	7	
															Empty	RESERVED		Empty	12V_AUX	12V_AUX	LGND	D
L1	L2	L3	ne Gnd	npty	pty	Empty	ıt +	rt +	Empty	Empty	pty	÷	÷	pty	Empty	SEC_RTN	Empty	Empty	RESERVED (RACK_ID)	RS485_B	LGND	с
1			Fram	E	Em	ш	Vout	Vout	Em	Em	E	Vout	Vout	Em	Empty	SLOT_ID	Empty	Empty	OPW	RS485_A	MOD_PRES	в
															Empty	INTERLOCK	Empty	Empty	RESERVED (DCOK)		ENABLE	Α
	PWB																					

= Short Pin = System side mating connector must have its Frame GRD pin the longest to ensure that it is mating first.

Connected Internally:

P8 & P9 P13 & P14 D5 & D6 C7 & D7

Cable Assembly

For convenient connection without a shelf (see photo under "Accessories").

Connectors:

- AC Installed: Molex 42818-0412 4-circuit single-row 10mm-pitch Mini-Fit Sr.[™] housing + crimp terminals Molex 42817-0032 (ground) & 3 ea. Molex 42817-0012:
 - Example mate: Molex 42816-0412 Receptacle Housing + 4 ea. Molex 42815-0012 female crimp terminals, 12-10 AWG

DC Installed: 4 ea. TE 640907-2 female Fast-on

Signal installed: Molex 43025-1400 Micro-Fit 3.0™ housing + 12 ea. Molex 43030-0002 female crimp terminals

• Example mate: Molex 43045-1413 Vertical Header, Dual Row, 14 circuits

Pin	Function	Name	Rectifier
1	RS485 signal B (inverting)	RS485_B	6C
2	Logic Ground (signal return)	LGND	7D
3	12V+	12V_AUX	6D
4	Module present	MOD_PRES	7B
5	Enable	ENABLE	7A
6	rsvd blank		
7	Secondary Return	SEC_RTN	2C
8	RS485 signal A (non-inverting)	RS485_A	6B
9	Logic Ground (signal return)	LGND	7C
10	12V+	12V_AUX	5D
11	Over Power Warning	OPW	5B
12	rsvd blank		
13	Slot ID	SLOT_ID	2B
14	Interlock	INTERLOCK	2A

INTERLOCK (pin 14) must be connected to SEC_RTN (pin 7) to enable the rectifier.

Rectifier signals not available from harness:

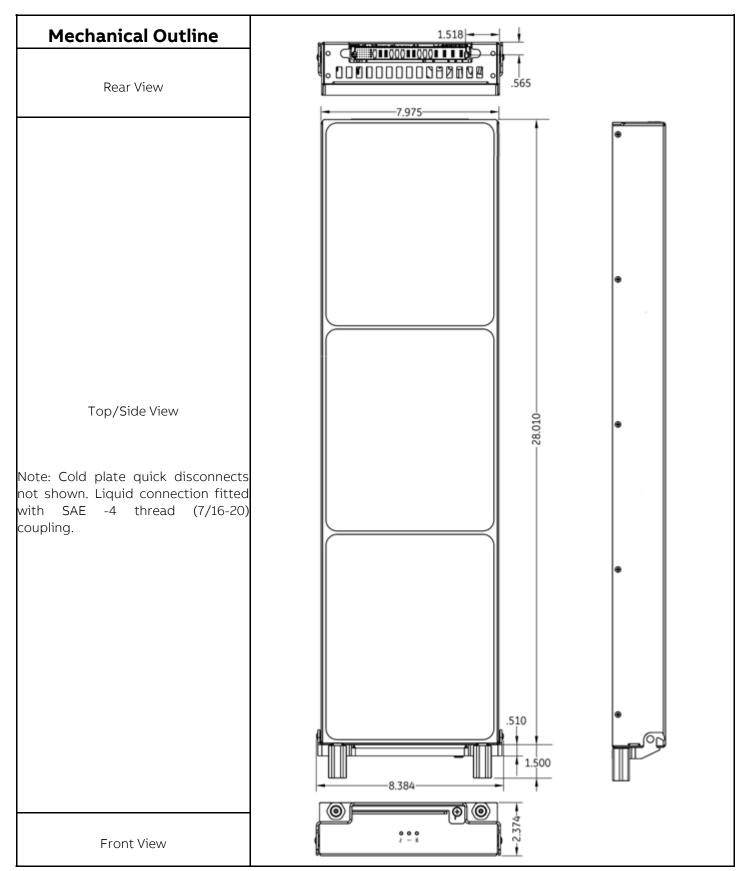
- DC_OK (5A)
- RACK_ID (5C)

Coolant Dripless Fittings

For convenient connection of coolant delivery hoses.

CC12500H3C380TEZ-GM:

The chiller plate is equipped with two dripless plugs: LQ2D4604BLU (CPC). Recommended mating sockets can be purchased from CPC (Colder Products Company).


CC12500H3C380TEZ-LN:

The chiller plate is equipped with the following dripless plugs:

- SCG03.7150/JE/KB/FS BLUE plug for Inlet
- SCG03.7150/JE/KR/FS RED plug for Outlet

Recommended mating sockets SCG03.1150/JE/KB/FS and SCG03.1150/JE/KR/FS can be purchased from Staubli Corporation.

Accessories

Item	Description	Ordering code
	Single-unit cable assembly that mates with rectifier Blind -Mate connector for bench-top testing. (sold as a component; equipment containing this harness requires safety certification)	8600164177P
	Two Slot Shelf Chassis J2015001L003	150046616

Ordering Information

Please contact your ABB Sales Representative for pricing, availability and optional features.

ltem	Description	Ordering code
CC12500H3C380TEZ-GM	12.5kW 400/480Vac-to-380VDC Rectifier with CPC LQ2 quick disconnects for coolant	150047061
CC12500H3C380TEZ-LN	12.5kW 400/480Vac-to-380VDC Rectifier with Staubli SCG03 quick disconnects for coolant	1600312237A

Change History (excludes grammar & clarifications)

Version	Date	Description of the change
5.4	12/21/2021	Updated as per template, Upgraded safety standards and Changed Maximum value of cooling flow rate in Environmental spec. table.
5.5	04/04/2022	Updated text on page 6.

ABB

601 Shiloh Rd.

Plano, TX USA

abbpowerconversion.com

HY-LINE Power Components Vertriebs GmbH Inselkammerstr. 10 D-82008 Unterhaching (2) +49 89/ 614 503 -10 power@hy-line.de

HY-LINE AG Hochstrasse 355 CH-8200 Schaffhausen ∅ +41 52 647 42 00 info@hy-line.ch

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior consent of ABB

Copyright© 2021 ABB

All rights reserved