

TFT-Display Datenblatt

Modell FG040321DUSWMG01

Kurzdaten

Hersteller Data Image

Diagonale 4,3" / 10,9 cm

Format wide

Auflösung 480 x 272

Backlight LED / 500 cd/m²

Interface RGB Touchscreen nein

Temperatur -20...+70 °C (Betrieb)

HY-LINE Computer Components Vertriebs GmbH Inselkammerstr. 10, 82008 Unterhaching bei München Tel.: +49 89 614 503 40 || Fax: +49 89 614 503 50 computer@hy-line.de || www.hy-line.de/computer

DATA IMAGE CORPORATION

TFT Module Specification

Preliminary

ITEM NO.: FG040321DUSWMG01

Table of Contents

1.	COVER & CONTENTS	1
2.	RECORD OF REVISION	2
3.	FEATURE ·····	3
4.	GENERAL SPECIFICATIONS	3
5.	ELECTRICAL CHARACTERISTICS	3
6.	BLOCK DIAGRAM ······	4
7.	PIN CONNECTIONS ······	5
8.	AC CHARACTERISTICS	6
9.	OPTICAL CHARACTERISTIC	11
10.	QUALITY ASSURANCE	13
11.	LCM PRODUCT LABEL DEFINE	14
12.	PRECAUTIONS IN USE LCM ······	16
13.	OUTLINE DRAWING	17
14.	PACKAGE INFORMATION	18

Customer Companies	R&D Dept.	Q.C. Dept.	Eng. Dept.	Prod. Dept.
	ALEX	JOE	GARY	KEN
Approved by	Version:	Issued Date:	Sheet Code:	Total Pages:
	1	02/OCT/12'		18

2. RECORD OF REVISION

Rev	Date	Item	Page	Comment
1	02/OCT/12'			Initial preliminary

3. FEATURE

• 64 gray level with 2 bit dithering function to realize 16M colors

4. GENERAL SPECIFICATIONS

Parameter	Specifications	Unit			
Display resolution	480X R.G.B x 272	dot			
Active area	95.04(W) x 53.856(H)	mm			
Screen size	4.3(Diagonal)	inch			
Dot pitch	0.066 (W) x 0.198(H)	mm			
Color configuration	R.G.B. Stripe				
Overall dimension	105.5 (W) x 67.2(H) x 3.1(D)	mm			
Weight	TBD	g			
Surface treatment	Anti glare				
View Angle direction	All				
Our components and processes are compliant to RoHS standard					

5. ELECTRICAL CHARACTERISTICS

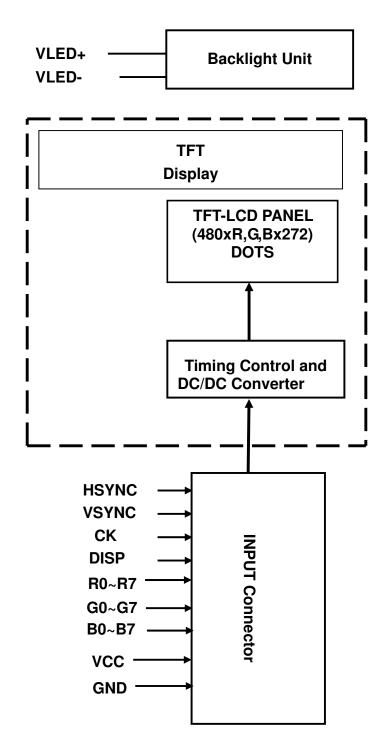
GND=0V,Ta=25°C

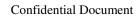
Parameter	Symbol	MIN.	Тур.	MAX.	Unit	Remark
Power Supply voltage	V _{CC}	3.0	3.3	3.6	V	Note1
Power Supply Current	I _{cc}		17	20	mA	$V_{CC} = 3.3V$
Ripple Voltage	V_{RPVCC}			100	mVp-p	
"H" level logical input voltage	V _{IH}	0.8Vcc		VCC	V	
"L" level logical input voltage	V _{IL}	0		0.2Vcc	V	
Operating temperature	Topa	-20		70	°C	Ambient temperature
Storage temperature	Tstg	-30		80	°C	Ambient temperature

Note1:VCC Absolute Maximum Ratings -0.3V~+6V

5.1 Backlight driving for power conditions

Ta= 25 °C


Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current	Ι _L		20		mA	
VLED voltage	V_{L}	28	33	36	V	I _{L=20} mA
LED life time			TBD		Hours	Note 1


Note 1 under room temperature (25 °C, Humidity 30-60% RH,20mA) and IL=20mA.

Voltage: VLED=33V(Typ.) Current: 20mA

FG040321DUSWMG01 REV: 1 Page: 3 /18

7. PIN CONNECTIONS

7.1 Input Pins Connection

Pin No	Symbol	Function	Remark
1	GND	Ground	
2	GND	Ground	
3	Vcc	Power Supply: +3.3V	
4	Vcc	Power Supply: +3.3V	
5	R0		
6	R1		
7	R2		
8	R3	Digital data input. R0 is LSB and R7 is MSB	
9	R4]	
10	R5		
11	R6		
12	R7		
13	G0		
14	G1		
15	G2		
16	G3	Digital data input. G0 is LSB and G7 is MSB	
17	G4		
18	G5		
19	G6		_
20	G7		
21	В0		
22	B1		
23	B2		
24	В3	Digital data input. B0 is LSB and B7 is MSB	
25	B4		
26	B5		
27	В6	1	
28	В7	1	
29	GND	Ground	
30	CK	clock signal to sample each data	
31	DISP	Display ON/OFF Control ON=H(VCC), OFF=L(GND)	
32	HSYNC	Horizontal synchronous signal	
33	VSYNC	Vertical synchronous signal	
34	NC	No Connection	
35	NC	No Connection	
36	NC	No Connection	
37	NC	Please leave it open	
38	NC	Please leave it open	
39	NC	Please leave it open	
40	NC	Please leave it open	

Page: 6/18

7.2 Backlight Pins Connection

No.	Signal	Function
1	VLED-	LED Power Source input terminal (Cathode side)
2	NC	No Connection
3	NC	No Connection
4	VLED+	LED Power Source input terminal (Anode side)

8. AC CHARACTERISTICS

8.1 Input Timing Requirement

(480RGBx272, Ta =25°C, VCC=3.3V GND= 0V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Clock cycle	fclk(1)	-	9	15	MHz
Hsync cycle	1/th	-	17.14	-	KHz
Vsync cycle	1/tv	-	59.94	-	Hz
Horizontal Signal					
Horizontal cycle	th	525	525	605	CLK
Horizontal display period	thd	480	480	480	CLK
Horizontal front porch	thf	2	2	82	CLK
Horizontal pulse width	thp ₍₂₎	2	41	41	CLK
Horizontal back porch	thb ₍₂₎	2	2	41	CLK
Vertical Signal					
Vertical cycle	tv	285	286	511	H ₍₁₎
Vertical display period	tvd	272	272	272	H ₍₁₎
Vertical front porch	tvf	1	2	227	H ₍₁₎
Vertical pulse width	tvp ₍₂₎	1	10	11	H ₍₁₎
Vertical back porch	tvb(2)	1	2	11	H ₍₁₎

Note: (1) Unit: CLK=1/ fclk, H=th,

(2) It is necessary to keep tvp+tvb=12 and thp+thb=43 in sync mode.

СК

R,G,B[7:0]

New Confidential Document Veyno Hayno Hay

Fig 1. Parallel RGB input timing

1st pixel 2nd pixel

thd

thb

invalid

thf

last pixel

invalid

Page: 8/18

8.2 Input Setup Timing Requirement (Ta =25°C, VCC=3.3V ,GND= 0V, tr (1)=tf (1)=2ns)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
DISP setup time	t diss	10	-	-	ns
DISP hold time	t dish	10	-	-	ns
Clock period	PWclk(2)	66.7	-	-	ns
Clock pulse high period	PWH ₍₂₎	26.7	-	-	ns
Clock pulse low period	PWL ₍₂₎	26.7	-	-	ns
Hsync setup time	ths	10	-	-	ns
Hsync hold time	t hh	10	-	-	ns
Data setup time	t ds	10	-	-	ns
Data hold time	t dh	10	-	-	ns
Vsync setup time	tvhs	10	-	-	ns
Vsync hold time	t vhh	10	-	-	ns

Note: (1) tr, tf is defined 10% to 90% of signal amplitude.

⁽²⁾ For parallel interface, maximum clock frequency is 15MHz.

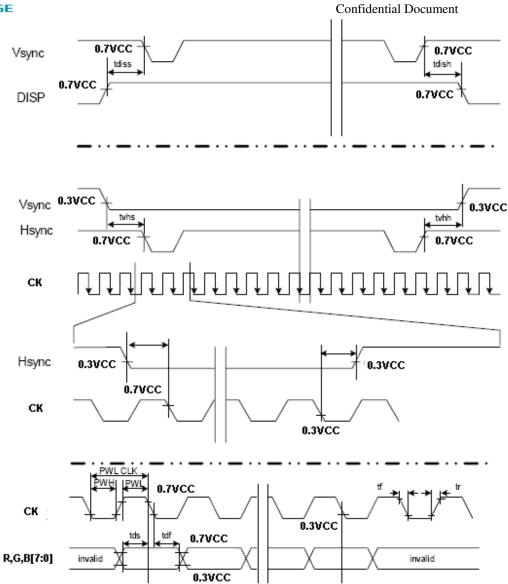


Fig 2. Input setup timing requirement

8.3 TCON Power ON/OFF Control

The TCON IC has a power ON/OFF sequence control function. When DISP pin is pulled "H", blank data is outputted for 10-frames first, from the falling edge of the following VSYNC signal. Similarly, when DISP is pulled "L", 10-frames of blank data will be outputted from the falling edge of the following VSYNC, too.

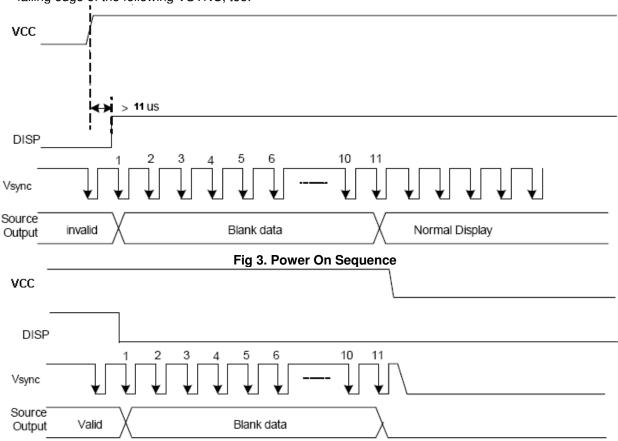
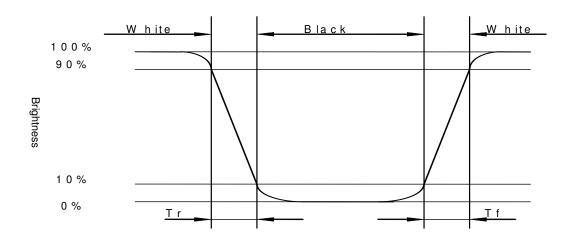


Fig 4. Power Off Sequence

9. Optical Characteristics

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response	Rise	Tr	<i>θ</i> =0°	-	5	8	ms	Note 4
time	Fall	Tf		-	15	20	ms	Note 4
Contras	t ratio	CR	At optimized viewing angle	500	600			Note 5
	Тор			70	80	-		
Viewing	Bottom		CR≥10	70	80	-	Dog	Note 6
angle	Left		GN≥10	70	80	-	Deg.	Note 6
	Right			70	80	-		
Luminance	of white		0.00	400	500		cd/m ²	Note 7
Unifor	mity	B-uni	<i>θ=</i> 0°	70			%	Note 8
Whi	te	Х	<i>θ=</i> 0°	0.26	0.31	0.36		Note 7
chroma	ıticity	у	<i>0=</i> 0	0.26	0.31	0.36		Note /

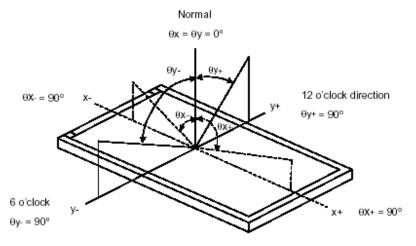

Note 1: Ambient temperature =25°C. LED current I_L = 20 mA.

Note 2: To be measured in the dark room.

Note 3: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-7A, after 2 minutes operation.

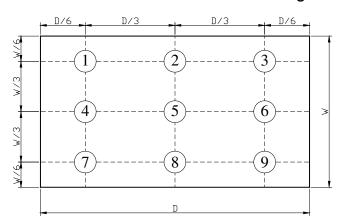
Note 4: Definition of response time:

The output signals of photo-detector are measured when the input signals are changed from "white" to "black" (rising time) and from "black" to "white" (falling time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as shown below.


Note5: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= Photo-detector output when LCD is at "White" state


Photo-detector output when LCD is at "Black" state

Note 6. Definition of viewing angle: Refer to figure as below.

Note 7. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened. Note 8: Definition of Brightness Uniformity (B-uni):

Luminance Measuring Points

$$B-uni = \frac{Minimum \ luminance \ of \ 9 \ points}{Maximum \ luminance \ of \ 9points}$$

Page: 13/18

10. QUALITY ASSURANCE 10.1 Test Condition

10.1.1 Temperature and Humidity(Ambient Temperature)

Temperature : $25 \pm 5^{\circ}$ C Humidity : $65 \pm 5\%$

10.1.2 Operation

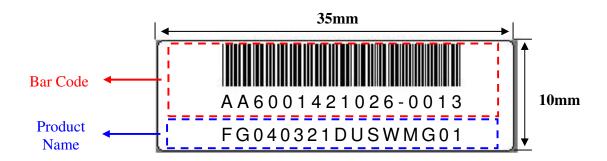
Unless specified otherwise, test will be conducted under function state.

10.1.3 Container

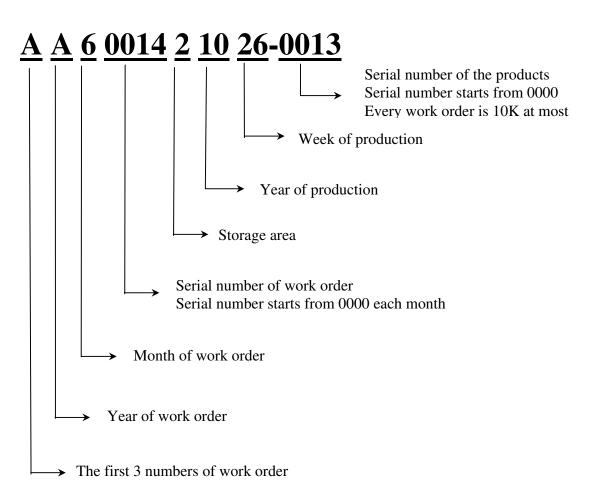
Unless specified otherwise, vibration test will be conducted to the product itself without putting it in a container.

10.1.4 Test Frequency

In case of related to deterioration such as shock test. It will be conducted only once.

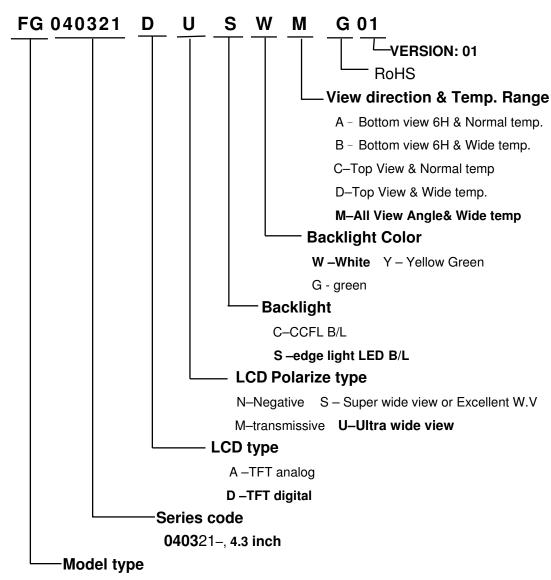

10.1.5 Test Method

No.	Reliability Test Item & Level	Test Level
1	High Temperature Storage Test	T=80°C,240hrs
2	Low Temperature Storage Test	T=-30°C,240hrs
3	High Temperature Operation Test	T=70°C,240hrs
4	Low Temperature Operation Test	T=-20°C,240hrs
5	High Temperature and High Humidity Operation Test	T=60°C,90% RH,240hrs
6	Thermal Cycling Test (No operation)	-30°C → $+25$ °C → $+80$ °C,200 Cycles 30 min 5min 30 min
7	Vibration Test (No operation)	Frequency:0 ~ 55 Hz Amplitude:1.5 mm Sweep Time:11min Test Period:6 Cycles for each Direction of X,Y,Z
8	Electrostatic Discharge Test (No operation)	$150 pF,330 \Omega$ Air: $\pm~15 KV; Contact:~\pm~8 KV$ 10 times/point;4 points/panel face



11. LCM PRODUCT LABEL DEFINE

Product Label style:



BarCode Define:

Product Name Define:

FG-Standard TFT Module

FX-Custom TFT Module

12. PRECAUTION FOR USING LCM

1. ASSEMBLY PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
- (4) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (5) Do not open the case because inside circuits do not have sufficient strength.
- (6) Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.
- (7) Please do not touch metal frames with bare hands and soiled gloves. A color change of the metal frames can happen during a long preservation of soiled LCD modules.
- (8) Please pay attention to handling lead wire of backlight so that it is not tugged in connecting with inverter.

. OPERATING PRECAUTIONS

- (1) Please be sure to turn off the power supply before connecting and disconnecting signal input cable.
- (2) Please do not change variable resistance settings in LCD module. They are adjusted to the most suitable value. If they are changed, it might happen LCD does not satisfy the characteristics specification
- (3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (4) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (6) Please consider that LCD backlight takes longer time to become stable of radiation characteristics in low temperature than in room temperature.

3. ELECTROSTATIC DISCHARGE CONTROL

(1) The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such the copper leads on the PCB and the interface terminals with any

Confidential Document

- parts of the human body.
- (2) The modules should be kept in antistatic bags or other containers resistant to static for storage.
- (3) Only properly grounded soldering irons should be used
- (4) If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.
- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended
- (6) Since dry air is inductive to statics, a relative humidity of 50-60% is recommended.

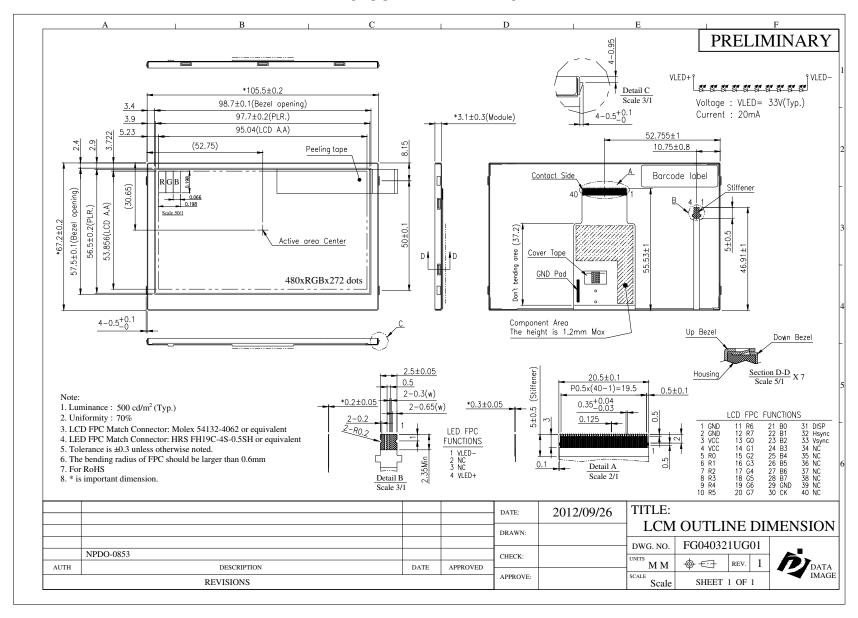
4. STORAGE PRECAUTIONS

- (1) When you store LCDs for a long time, it is recommended to keep the temperature between $0^{\circ}\text{C}\text{-}40^{\circ}\text{C}$ without the exposure of sunlight and to keep the humidity less than 90%RH.
- (2) Please do not leave the LCDs in the environment of high humidity and high temperature such as $60^{\circ}\text{C}\ 90\%\text{RH}$
- (3) Please do not leave the LCDs in the environment of low temperature; below -20°C.

5. OTHERS

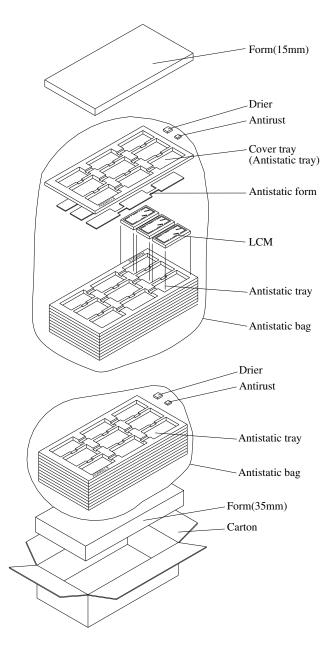
- (1) A strong incident light into LCD panel might cause display characteristics' changing inferior because of polarizer film, color filter, and other materials becoming inferior. Please do not expose LCD module direct sunlight Land strong UV rays
- (2) Please pay attention to a panel side of LCD module not to contact with other materials in preserving it alone.
- (3) For the packaging box, please pay attention to the followings:
 - a. Please do not pile them up more than 5 boxes.
 (They are not designed so.) And please do not turn over.
- b. Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
- Packing box and inner case for LCDs are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.)

6. LIMITED WARRANTY


Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.

Page: 16/18

FG040321DUSWMG01 REV: 1



13. OUTLINE DRAWING

14. PACKAGE INFORMATION

Material

1 Carton + 1 Form (15mm) + 2 Anti-static bag + 20 Anti-static tray + 2 Drier + 2 Antirust + 1 Form (35mm)

Total pcs

- 1 Antistatic tray = 9 pcs (modules)
- 1 Anti-static bag = 9 Anti-static tray + cover tray = 9*9 + 1*0 = 81 pcs
- 1 Carton = 2 Anti-static bag = 2*81 = 162 pcs
- 1 Carton = 162 pcs

Carton size : 465L x 380W x 395H (mm)

FG040321 TFT LCM PACKING